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The concept of ‘exercise pills’ has great
potential for use in patients having low
exercise compliance or in those for
whom regular exercise is not feasible.
Our increased understanding of the
molecular targets of physical exercise
makes it possible to design agents that
mimic the physiological benefits of
exercise.

Current candidate exercise pills can be
divided into three categories: pharma-
cological agonists (AICAR,
GW501516, GSK4716, SR9009), hor-
mones (MOTS-c, irisin), and phyto-
chemicals [resveratrol and
(–)-epicatechin].

The signaling pathways of currently
described exercise pills are outlined.
None of the candidate exercise pills
fully mimics the beneficial effects of
exercise, but each exercise pill can
activate distinct as well as overlapping
target transcriptional regulators that
can partly mimic the beneficial effects
of physical exercise.
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Sedentary lifestyles, limited physical exercise, and prolonged inactivity
undoubtedly increase chronic diseases, including obesity, type 2 diabetes,
and cardiovascular diseases. It is widely acknowledged that exercise induces
a number of physiological adaptations that have beneficial effects in the pre-
vention and treatment of these chronic metabolic diseases. Unfortunately,
exercise compliance is extremely low and often not possible. The development
of exercise science and molecular techniques has increased our understanding
of the molecular pathways responsive to exercise. Knowledge of these molec-
ular targets has led to the development of chemical interventions that can mimic
the beneficial effects of exercise without requiring actual muscle activity. This
review focuses on the concept of ‘exercise pills’ and how they mimic the effects
produced by physical exercise including oxidative fiber-type transformation,
mitochondrial biogenesis, increased fat oxidation, angiogenesis, and improve-
ment of exercise capacity. We also review candidate exercise pills, and contrast
the beneficial effects and molecular mechanisms between physical exercise
and exercise pills.

Barriers to Exercise
Developments in technology and resultant changes in working methods have decreased levels
of physical exercise and increased time spent sitting, especially in developed countries. Exces-
sive caloric intake and limited physical activity contribute to the current explosion of ‘modern’
chronic diseases such as obesity, type 2 diabetes, muscle atrophy, and cardiovascular diseases
[1–3]. By contrast, regular physical exercise maintains glucose homeostasis and induces
physiological adaptations that effectively prevent, and often reverse, these diseases [4–6].
Recognizing the human and economic burdens these diseases cause, and taking into account
the health benefits of exercise, have led many exercise scientists to suggest that physical
exercise may be the preferred method in the treatment and prevention of these ‘modern’ chronic
diseases [7].

Unfortunately, exercise compliance levels are almost universally low, especially for people using
home-based exercise programs, representing a major obstacle to the wide-scale implementa-
tion of exercise training methods [8–10]. We knew as early as 1990 when Sluijs and Kuijper [11]
reported that while 64% of their patients initially adhered to short-term exercise regimens, only
23% of them sustained this effort over the long term. Moreover, according to the position
statement of the study group on exercise training in heart failure of the Heart Failure Association
of the European Society of Cardiology, exercise adherence of patients dropped from 84% during
the early period of supervised training to 62% 1 year later, and then to 40% 3 years later [10]. In
addition, van der Wal et al. [12] also report that although 80% of patients recognized the
importance of exercise, only 39% of these patients were compliant with the exercise regimens. A
variety of factors including poor physical condition, weakness, sickness, lack of time, and poor
motivation contribute to low exercise compliance. The much publicized poor compliance begs
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the question: is there an alternative approach that both induces the health benefits of physical
exercise and overcomes the problem of low compliance rate?

Mimicking Exercise
Regular physical exercise activates a number of molecular pathways in whole organ systems
and reduces the risk of developing numerous chronic diseases (Figure 1A). Although nothing
can fully substitute for physical exercise, candidate exercise pills that have emerged in recent
years [13–19] may be an attractive alternative for people who are unable to undertake regular
exercise because of medical conditions such as obesity, amputations, spinal injuries, metabolic
diseases, and musculoskeletal or cardiovascular conditions. The signaling molecules activated
by physical exercise are logically considered to be potent pharmacological targets for such
exercise pills.
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Figure 1. Proposed Molecular Mechanisms and Beneficial Effects of Physical Exercise and Candidate
Exercise Pills. The middle panel (A) indicates some molecular pathways activated by regular (conventional) physical
exercise and the resultant beneficial effects, such as mitochondrial biogenesis, oxidative fiber-type transformation,
improved fatty acid oxidation, angiogenesis, and increased exercise capacity. (B) None of the candidate exercise pills
fully mimics the full palette of the beneficial effects of exercise, but each exercise pill can activate distinct as well as
overlapping target transcriptional regulators that partly mimic the beneficial effects induced by exercise. Note that
GW501516 (B2) by itself is unable to enhance endurance performance and has synergistic effects when combined with
either exercise or AICAR; the combination induces mitochondrial biogenesis and fiber-type transformation and improves
exercise capacity. In addition, irisin (B6), as a PGC-1/-dependent myokine, stimulates browning of white fat, consequently
enhancing thermogenesis and total body energy expenditure. Abbreviations: AMPK, adenosine monophosphate-activated
protein kinase; SIRT1, silent information regulation T1; PGC-1/, peroxisome proliferator-activated receptor-g coactivator-
1/; ERRs, estrogen-related receptors; PPARs, peroxisome proliferator-activated receptors; eNOS, endothelial nitric oxide
synthase; NO, nitric oxide.
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‘Exercise pills’ are active compounds that mimic the biochemical and functional effects of regular
exercise, such as oxidative fiber-type transformation, mitochondrial biogenesis, improved fatty
acid oxidation, angiogenesis, and increased exercise capacity. The concept of ‘exercise pills’
was first introduced by Himms-Hagen in 2004 [20], followed by Narkar and colleagues [14] who
suggested that some molecules could mimic the effects of exercise training. Many subsequent
studies have explored the development of exercise pills, and currently described potential
exercise pills are listed in Table 1. Next, we briefly discuss the supporting evidence and
proposed mechanisms for candidate exercise pills.

Candidate Exercise Pills
AICAR
AICAR, also known as 5-aminoimidazole-4-carboxamide ribonucleotide, AICA-ribonucleotide,
ZMP, and acadesine, is an intermediate metabolite in the de novo synthesis pathway of inosine
monophosphate [21]. It was first used in 1992 as a method of protection against cardiac
ischemic injury during surgery [22]. Later, AICAR was developed by PeriCor Therapeutics as an
adenosine regulating agent and licensed to Schering-Plough in 2007. Recent data by Narkar
et al. [14] show that treating mice with AICAR alone for over 4 weeks upregulated gene
expression of several proteins involved in oxidative metabolism while also increasing running
endurance by 44%. Given this, it seems that AICAR can induce exercise adaptation and increase
endurance, even without physical exertion attributable to exercise. Treatment with AICAR for 14
days significantly decreased the proportion of glycolytic fast-twitch (type IIB) myofibers and
simultaneously caused even larger increases in the more oxidative and slower-twitch type IIX
myofibers in extensor digitorum longus (EDL) muscles [23], indicating that AICAR induces fiber-
type transformation in skeletal muscle. This suggests that AICAR could be a promising candi-
date as an exercise pill.

AICAR, as a synthetic adenosine monophosphate (AMP) analog, can pharmacologically activate
AMP-activated protein kinase (AMPK). It is important to note that AMPK is a heterotrimeric
complex that consists of catalytic / subunit and regulatory b and g subunits: exercise activates
Table 1. Current Candidate Exercise Pills

Compound Category Target Organ Molecular Target Functional Changes Refs

AICAR AMPK agonist Skeletal muscle AMPK Fiber-type reformation
Mitochondrial biogenesis

[14,21–40]

GW501516 PPARd agonist Skeletal muscle PPARd Fiber-type reformation
Mitochondrial biogenesis

[14,41–49]

GSK4716 ERR agonist Skeletal muscle ERRg Mitochondrial biogenesis
Fiber-type reformation
angiogenesis

[15,50,51]

SR9009 REV-ERB
agonist

Skeletal muscle REV-ERB/ Mitochondrial biogenesis
Improved energy
metabolism

[18,52–56]

MOTS-c Mitokine Skeletal muscle AMPK Maintaining metabolic
hemostasis
Restore insulin sensitivity

[19,57]

Irisin Myokine Adipose tissue PGC-1/ Thermogenesis
Enhanced energy
expenditure

[17,58–75]

(–)-Epicatechin Phytochemical Skeletal and
cardiac muscle

NO Mitochondrial biogenesis
Increased capillaries

[16,76–85]

Resveratrol Phytochemical Cardiovascular PGC-1//NO Mitochondrial biogenesis
Angiogenesis

[13,86–101]
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all three subunits depending on intensity [24]. AMPK plays a central role in cellular energy
metabolism and is often referred to as the ‘metabolic master switch’. It maintains energy balance
by promoting cellular uptake of glucose, b-oxidation of fatty acids, and biogenesis of glucose
transporter 4 (GLUT4) while concurrently inhibiting ATP-consuming biosynthetic pathways. The
energy-sensing capability of AMPK can be attributed to its ability to detect and react to
fluctuations in the AMP:ATP ratio, which take place at rest and during exercise [25]. In addition,
AMPK is also implicated in the induction of mitochondrial biogenesis [26].

Furthermore, AICAR affects gene expression and regulation. AICAR increases peroxisome
proliferator-activated receptor-g coactivator-1/ (PGC-1/) protein levels. PGC-1/ is a tran-
scriptional coactivator that induces mitochondrial biogenesis and fiber-type transformation in
skeletal muscles [27]. AMPK can directly interact with PGC-1/. Several AMPK-induced mito-
chondrial gene expression pathways occur through PGC-1/ activation [28,29] (Figure 1,
compound B1).

Thus, treatment with AICAR activates AMPK, and AMPK then interacts, either directly or
indirectly, with PGC-1/, inducing improved oxidative metabolism, mitochondrial biogenesis,
and fiber-type transformation in skeletal muscle. Taken together, this suggests that AICAR is
capable of mimicking a broad spectrum of exercise-like adaptation in skeletal muscle.

A new arrival in the exercise mimetic family is compound 14, as reported recently by Asby and
colleagues from Southampton University in the UK [30]. Compound 14 is an inhibitor of AICAR
transformylase homodimerization and acts differently from treatment with AICAR – this agent
increases endogenous levels of AICAR by inhibiting ATIC, leading to a rise in endogenous AICAR
and thus activating AMPK and its downstream signaling pathways, including increased fatty acid
oxidation and glucose uptake. The detailed study by Asby et al. [30] reported that treatment with
compound 14 in obese mice for 7 days lowered blood glucose to near normal levels and
improved glucose tolerance by approximately 30% while at the same time causing a significant
loss of body weight in animals fed a high-fat diet. It is presently unclear if treatment with
compound 14 increased exercise capacity or endurance levels in the treated animals.

It is important to note that metformin, widely used in the treatment of type 2 diabetes, is also an
AMPK-activating agent. Indeed, metformin lowers blood glucose and enhances insulin sensi-
tivity at least in part through activation of AMPK [31]. Of interest, treating healthy individuals with
metformin for 7–9 days slightly but significantly reduced key outcomes related to maximal
exercise capacity, such as peak oxygen uptake (VO2max), heart rate (HR), peak ventilation (VE),
peak respiratory exchange ratio (RER), and exercise duration [32]. Such findings have since
been confirmed in patients with heart failure and lower degrees of insulin resistance [33–35]. The
effects of metformin on exercise capacity are complicated by findings that metformin blunts the
full effects of exercise training in prediabetic individuals [36], and other findings retort that it
modestly reduces the benefits of exercise on glycemic control (by measuring hemoglobin A1c or
HbA1c levels) or fitness (aerobic and/or resistance exercise) in an exercise intervention trial. One
possibility is that metformin activates AMPK in hepatocytes and consequently reduces acetyl-
CoA carboxylase (ACC) activity. Decreased ACC induces fatty acid oxidation and suppresses
expression of lipogenic enzymes [31]. Metformin also inhibits complex 1 of the mitochondrial
respiratory chain [37–40], but unfortunately inhibition of complex 1 reduces the mitochondrial
reserve induced by exercise training and decreases exercise performance [35]. Thus, metformin
may not be rightly considered a candidate exercise pill.

GW501516
GW501516 (also known as GW1516, GSK-516, and endurobol) is a peroxisome proliferator-
activated receptor d (PPARd) agonist originally developed by GlaxoSmithKline (GSK) in 1992.
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Initially, GW501516 was used to improve skeletal muscle utilization of fatty acids in preference to
carbohydrates, making it a potential treatment for obesity, type 2 diabetes, dyslipidemia, and
metabolic syndrome [41–44]. It has since been shown that GW501516 activates PPARd,
thereby inducing physiological adaptations, such as fiber-type transformation, similar to those
seen in response to physical exercise. For example, Narkar et al. [14] reported that treatment
with GW501516 when combined with exercise synergistically increased oxidative slow-twitch
(type I) fiber and mitochondrial biogenesis, resulting in improved endurance capacity. However,
treatment with GW501516 alone did not alter fiber-type composition, indicating that pharma-
cological activation of PPARd by itself is insufficient to enhance exercise capacity.

PPARd is a member of the nuclear receptor family and plays a crucial role in the transcriptional
regulation of skeletal muscle metabolism [45–47]. Exercise training induces its expression in type
I fibers of skeletal muscle and triggers type I fiber transformation [45,48,49]. Overexpression of
PPARd leads to mitochondrial biogenesis and high levels of oxidative type I fiber composition
[46]. Remarkably, GW501516 and AICAR synergistically affect mitochondrial biogenesis and
fiber-type transformation and significantly increase exercise endurance more than either com-
pound alone [14] (Figure 1, compound B2). More research is needed to better understand the
functional consequences of GW501516 and raise its profile as a possible candidate as an
exercise pill.

GSK4716
GSK4716 is a synthetic small molecule agonist of estrogen-related receptors (ERRs) and binds
to the ERRg subtype with high selectivity [50]. ERR is a heterotrimeric complex composed of
three isoforms: ERR/, ERRb, and ERRg. The ERRg subtype is often described as a key regulator
of the oxidative muscle fiber phenotype. It is specifically expressed in slow-twitch muscle types
of skeletal muscle and plays an important role in enhancing exercise capacity, activating
mitochondrial biogenesis, and controlling angiogenesis and myofibrillar transformation. Recent
data show that treatment of mouse myotubules with GSK4716 induced upregulation of ERRg
and its coactivators PGC-1/ and PGC-1b by Rangwala et al. [15]. By contrast, other findings
indicate that structural remodeling and functional improvements induced by ERRg are indepen-
dent of PGC-1/, but are related to ERRg-directed AMPK activation in the muscle (Figure 1,
compound B3) [51]. Clearly, more research is needed to examine this issue in greater detail.

In summary, GSK4716 activates ERRg to induce myofibrillar transformation, angiogenesis,
mitochondrial biogenesis, and improve exercise performance, and can impart several of the
benefits accrued by exercise. Thus, it can be considered a candidate exercise pill.

SR9009
SR9009 is a synthetic REV-ERB/ agonist developed at The Scripps Research Institute in 2012
[52]. REV-ERB/, also known as NR1D1 (nuclear receptor subfamily 1, group D, member 1), is a
member of the REV-ERB family of nuclear receptors [53]. Enhancement of REV-ERB/ expres-
sion increases mitochondrial content and number, and decreases autophagy flux, thus improv-
ing exercise capacity [52,54–56]. Recently, an in vivo study found that a single injection of
SR9009 induced the expression of genes related to fatty acid catabolism, and enhanced
mitochondrial activity; treatment for 12 days enhanced energy consumption without changing
the RER, while treatment for 30 days significantly prolonged mouse running times. Additionally,
treatment of mouse myocardial cells in vitro with SR9009 increased mitochondrial numbers. In
contrast to other nuclear receptors such as PPAR/, ERRg, or coregulators such as PGC-1/,
treatment with REV-ERB/ triggers skeletal muscle mitochondrial biogenesis through modula-
tion of the liver kinase B1(Lkb1)–AMPK-silent information regulation T1 (SIRT1)–PGC-1/
pathway, without inducing a switch of muscle fiber types [18] (Figure 1, compound B4). In
addition, REV-ERB/ is also a circadian clock component and plays an important role in
910 Trends in Pharmacological Sciences, December 2015, Vol. 36, No. 12



regulating rhythmic changes in activity and metabolism. It is likely that SR9009 alters circadian
regulation of skeletal muscle activity, leading to increased energy expenditure [52].

Thus, REV-ERB/ enhances mitochondrial biogenesis and improves oxidative function.
SR9009, a pharmacological agonist of REV-ERB/, may be a promising exercise pill that mimics
exercise-like benefits on energy metabolism.

MOTS-c
MOTS-c (mitochondrial open reading frame of the 12S rRNA-c), a hormone encoded in the DNA
of mitochondria, was recently discovered by Lee et al. [19]. It facilitates accumulation of
endogenous AICAR, an AMPK activator. As a mitokine, MOTS-c has systemic effects, but
appears to chiefly target skeletal muscle [57]. A recent study indicates that MOTS-c treatment
restores insulin sensitivity and metabolic homeostasis in mice fed a high-fat diet [19]. In principle,
MOTS-c, as a mitochondrial signaling peptide, acts on the folate cycle in muscle and consis-
tently blocks the tethered de novo purine biosynthesis pathway, leading to accumulation of
AICAR, AMPK activation, and maintenance of metabolic homeostasis. In addition, MOTS-c also
regulates cellular and systemic glucose metabolism and restores insulin sensitivity [19] (Figure 1,
compound B5). To summarize, MOTS-c is a recently identified candidate exercise pill, with a
limited profile of detailed studies on exercise capacity. Additional studies are needed to better
understand its mechanism in the short and long term.

Irisin
Irisin is a novel myokine first identified by the Spiegelman group [17]. Irisin is secreted by skeletal
muscle in response to exercise and targets white adipose tissue [58]. Exercise induces PGC-1/
in muscle, and PGC-1/ stimulates the expression of fibronectin type III domain-containing
protein 5 (FNDC5) genes. The FNDC5 gene encodes FNDC5, which undergoes post-transla-
tional processing to form irisin that is then secreted into circulation. Irisin stimulates browning of
white fat and increases the expression of uncoupling protein-1 (UCP-1), thereby enhancing
thermogenesis and energy expenditure. For example, injection of irisin for 10 days induces
weight loss and maintains glucose homeostasis in obese mice [17]. Thus, irisin mimics some
important beneficial effects of physical exercise (Figure 1, compound B6).

Despite a number of recent studies demonstrating that irisin has exercise-like effects, some
controversy remains about the claim that irisin is a candidate exercise pill [59–61]. For example, a
study by Raschke et al. [62] indicated that FNDC5 mRNA expression was not altered in muscle
biopsies from human endurance and strength training studies, and questioned whether the
beneficial effects of irisin in mice can be translated to humans. Another consideration is that
although there are many studies regarding the effects of exercise on human serum irisin levels
[63–66], these studies make conflicting claims about the relationship between circulating irisin
levels and exercise [67–74]. Many studies used commercially available ELISA kits to examine
serum irisin levels that caused Albrecht et al. [59] to call into question the accuracy of these data,
because when they used western blot analysis with four different antibodies and a sensitive
detection system to examine circulating irisin in humans or several animal species, they found
unchanged serum irisin levels before and after exercise. In addition, Timmons et al. [61] detected
no significant increases in FNDC5 mRNA in human muscle biopsies when examined by gene
expression arrays after exercise.

A recent follow-up study by the Spiegelman group used state-of-the-art quantitative mass
spectrometry (an antibody-independent method) to detect levels of the irisin peptide in human
plasma. Circulating irisin levels (�3.6 ng/ml in sedentary individuals) were significantly increased
(to �4.3 ng/ml) by aerobic interval training [75]. Importantly, this study provides fresh evidence
that substantiates the earlier report by this group [17]. More research is clearly necessary to
Trends in Pharmacological Sciences, December 2015, Vol. 36, No. 12 911



examine this issue in greater detail, with an emphasis on detection methods and levels in acute
and chronic exercise of varying levels of intensity.

(–)-Epicatechin
The flavonoid (–)-epicatechin, the most common isomer of epicatechin, is present in plants such as
cocoa, tea, and grapes and has been shown to enhance angiogenesis and mitochondrial function
both in sedentary conditions and after endurance exercise. One study reported that (–)-epicatechin
alone or together with exercise induced structural and metabolic adaptation in skeletal and cardiac
muscle and improved endurance capacity [16]. Another study indicated that (–)-epicatechin
treatment alone significantly increased mitochondrial signaling, and cumulatively enhanced exer-
cise performance when combined with 8 weeks of exercise training [76]. In addition, (–)-epica-
techin may also improve myocardial capillary formation in response to exercise [77].

The beneficial effects of (–)-epicatechin may be attributable to activation of the vascular endothelial
growth factor (VEGF)–endothelial nitric oxide synthase (eNOS)–nitric oxide (NO) pathway. Some
animal studies demonstrate that (–)-epicatechin increases NO production in endothelial cells [78]
and attenuates myocardial injury [79,80]. There are several studies showing that the NO pathway
may play a role in mitochondrial biogenesis [81–83] and angiogenesis [84] in skeletal muscle.
Remarkably, only (–)-epicatechin, and not the stereoisomers (+)-epicatechin, (–)-catechin, or
(+)-catechin, is able to induce in vivo capillary formation [85] (Figure 1, compound B7).

In summary, (–)-epicatechin, as a natural extract, mimics many exercise-like benefits such as
improved mitochondrial function and increased capillary formation in skeletal and cardiac muscle,
and provides a promising theoretical basis for its potential application as an exercise pill.

Resveratrol
Resveratrol (3,5,40-trihydroxystilbene) is a naturally occurring polyphenol present in many foods,
including red wine, grapes, and blueberries. Resveratrol enhances mitochondrial biogenesis,
stimulates angiogenesis, improves exercise capacity, and increases insulin sensitivity in the
same manner as exercise training. In animal studies, resveratrol-treated mice had improved
mitochondrial function and endurance capacity [13], and resveratrol treatment for 12 weeks
induced AMPK expression and ameliorated the whole-body insulin tolerance in KKAy mice, a
model of obese type 2 diabetes [86]. Furthermore, studies in humans show similar adaptations
triggered by resveratrol through improvement of mitochondrial efficiency [87,88].

As with exercise training, resveratrol activates the energy-sensing enzyme AMPK [89]. On the
one hand, AMPK activation stimulates the NAD+-dependent type III deacetylase SIRT1 by
increasing cellular NAD+ levels [90,91]. SIRT1 deacetylates PGC-1/ and modulates its activity
[92,93]. On the other hand, AMPK activation also directly regulates the activity of PGC-1/ [94].
Increased PGC-1/ triggers gene transcription of nuclear-encoded mitochondrial proteins
(NEMPs) and enhances mitochondrial biogenesis [95,96]. In addition, Fukuda et al. [97] reported
that resveratrol can also stimulate the VEGF–eNOS–NO pathway, which enhances angiogenesis
(Figure 1, compound B8).

However, discrepant results were described by Higashida et al. [89] who reported that resvera-
trol failed to affect mitochondrial biogenesis, despite AMPK activation in skeletal muscle cells. It
appears that the inconsistent results of different studies may be related to the differences in the
dosage of resveratrol used, as confirmed by several studies showing that dosage plays a crucial
role in beneficial effects with resveratrol treatment [13,98,99], and that common resveratrol
supplements have levels of resveratrol that are too low to induce changes in mitochondrial
properties [100,101]. Thus, further research is necessary to understand the optimal dosage of
resveratrol required to induce its exercise-like effects in humans.
912 Trends in Pharmacological Sciences, December 2015, Vol. 36, No. 12



Exercise Pills and Vasculature, Epigenetics
While exercise pills arguably can mimic the benefits of exercise in skeletal muscle, their effects in
the vasculature are confounded by some important challenges. Exercise increases laminar shear
stress in the vasculature to affect multiple signaling pathways (Figure 2), including the phos-
phoinositide 3-kinase (PI3K), small GTPases such as Ras, extracellular signal-regulated kinase
(also known as mitogen-activated protein kinase, MAPK), and NO pathways [102]. Our current
understanding is that exercise increases luminal endothelial shear stress, and then mainly
activates PI3K to phosphorylate protein kinase B (Akt) and induce Akt-mediated eNOS phos-
phorylation, leading to higher NO production and its resultant beneficial cardiovascular protec-
tive effects. However, of the current list of candidate exercise pills, only (–)-epicatechin and
resveratrol activate eNOS expression and increases NO synthesis.

An emerging area of interest is the epigenetic effect of exercise. A recent study in Sweden
examined DNA methylation and associated transcriptomic changes in 23 healthy young males
and females (average age, 27 years; body mass index, 24 kg/m2) who were asked to exercise
(four times a week for 3 months) on stationary bikes but using only one leg (using an ingenious
but simple design whereby the second unexercised leg served as a control) [103]. In addition to
the expected physical changes in the exercised leg, there were also almost 5000 sites across the
genome with new methylation – with increases in sites related to structural remodeling and
glucose metabolism and decreases in those associated with inflammatory/immune responses.
Promising preclinical data in rats selectively bred to be high performance runners show that
resveratrol can further enhance their performance [104], an effect that may be related to the
effects of resveratrol on gene regulation of SIRT1 that increases AMPK phosphorylation [105]. It
is unclear if exercise pills can enhance exercise performance in humans and how this may be
related to epigenetic regulation of specific genes.
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Figure 2. The Possible Molecular Mechanisms of Exercise and Exercise Pills in the Vasculature. Exercise
increases laminar shear stress in the vasculature to affect multiple signaling pathways. However of the current list of
candidate exercise pills, only (–)-epicatechin and resveratrol activate eNOS expression and increases NO synthesis,
mimicking exercise-like beneficial effects. Abbreviations: PI3K, phosphoinositide 3-kinase; Akt, phosphorylate protein
kinase B; MAPK, mitogen-activated protein kinase; PGI2, prostaglandin I2; eNOS, endothelial nitric oxide synthase; NO,
nitric oxide.
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Outstanding Questions
To better understand the therapeutic
opportunities available for targeting the
molecular targets of physical exercise,
the following issues should be more
fully addressed when considering exer-
cise pills.

It is apparent that the candidate exer-
cise pills can activate some, but not all,
of the molecular pathways stimulated
by physical exercise (Table 2). Does
this mean that a multidrug approach
would be necessary to more fully derive
the benefits of physical exercise? For
example, aerobic exercise improves
cognition in elderly women [110] and
also positively impacts cortical neuro-
plasticity in seniors [111].

Can one achieve the cardiovascular
benefits of physical exercise using
pharmacological agents that do not
increase shear stress on the luminal
surface of the endothelium?

Does molecular targeting of signaling
pathways stimulated by exercise pills
also provide the non-skeletal and non-
Concluding Remarks
Current candidate exercise pills can be divided into three categories: pharmacological agonists
(AICAR, GW501516, GSK4716, and SR9009), hormones (MOST-c and irisin), and phytochem-
icals [resveratrol and (–)-epicatechin]. Except for the two phytochemicals that are not used to
mimic exercise, the other exercise pills are still in experimental stages. For a better understanding
of some of these exercise pills, we compared the signaling pathways and physiological
adaptation among candidate exercise pills described to date (Figure 3). None of the candidate
exercise pills fully mimics the full palette of the beneficial effects of exercise, but each exercise pill
can activate distinct as well as overlapping target transcriptional regulators that partly mimic
profound beneficial effects in some target organs induced by exercise and enhance exercise
capacity (Table 2). Further development of exercise pills that act in combination may be more
effective than single compounds.

Many aspects of the current list of candidate exercise pills are still not fully understood (see
Outstanding Questions), including side effects, optimal dosage, and misuse. Some studies
show that AMPK activation decreases protein synthesis and increases autophagy, resulting in a
chronic catabolic state [106,107]. Meanwhile, increased PGC-1/ in skeletal muscle induces
severe muscle atrophy as mice age [108]. In addition, the first doping case regarding GW501516
was reported in a cycling competition in 2013 [109], thus increasing the need for additional
studies on the pharmacokinetics and pharmacodynamics effects of exercise pills in humans.

Remarkably though, exercise pills are still at the starting line and have a long road ahead before
they gain clinical application. However, we expect that as we gain an improved understanding of
cardiovascular benefits of exercise
such as improved mental health and
increased bone strength?

Can the exercise pills currently
described be used to extend endur-
ance and performance in physically
active people and what are the conse-
quences for ‘doping’ in professional or
amateur sports? Should exercise pills
be part of the routine screening tests?

Are there dose-dependent effects with
the use of exercise pills and what is the
therapeutic index of these agents?

How suitable are the pharmacokinetic
properties of currently described exer-
cise pills for long-term use in humans
(e.g., dose schedule, oral use, bioavail-
ability, excretion and metabolism in
people with pre-existing medical con-
ditions who would otherwise benefit
from their use, etc.)? What are the unin-
tended consequences of the long-term
use of exercise pills in humans?
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Figure 3. Comparison of Signaling Pathways and Physiological Adaptation among Exercise Pills. Current
candidate exercise pills can be divided into three categories: pharmacological agonists (AICAR, GW501516, GSK4716, and
SR9009), hormones (MOST-c and irisin), and phytochemicals [resveratrol and (–)-epicatechin]. Each exercise pill can
activate specific target transcriptional regulators that partly mimic profound beneficial effects in some target organs induced
by exercise. Abbreviations: (–)-epi, (–)-epicatechin; Resv, Resveratrol.
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Table 2. Comparison of the Target Signaling Activated by Exercise and Candidate Exercise Pills

Signaling Exercise AICAR GW1516 GSK4716 SR9009 MOST-c Irisin (–)-Epicatechin Resveratrol

AMPK " " – " " " – – "
SIRT1 " " – " " " – – "
PGC-1a " " " " " " " – "
PPARd " " " – – – – – –

ERRg " – – " – – – – –

REV-
ERBa

" – – – " – – – –

NO " – – – – – – " "
the molecular mechanism by which exercise induces beneficial effects, we will likely gain
increased confidence in creating exercise pills that have minimal side effects with much
improved efficacy.
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