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Published November 25, 2015; doi:10.1152/physrev.00029.2014.—Multiple epi-
demiological studies document that habitual physical activity reduces the risk of ath-
erosclerotic cardiovascular disease (ASCVD), and most demonstrate progressively

lower rates of ASCVD with progressively more physical activity. Few studies have included individ-
uals performing high-intensity, lifelong endurance exercise, however, and recent reports suggest
that prodigious amounts of exercise may increase markers for, and even the incidence of, cardio-
vascular disease. This review examines the evidence that extremes of endurance exercise may
increase cardiovascular disease risk by reviewing the causes and incidence of exercise-related
cardiac events, and the acute effects of exercise on cardiovascular function, the effect of exercise
on cardiac biomarkers, including “myocardial” creatine kinase, cardiac troponins, and cardiac
natriuretic peptides. This review also examines the effect of exercise on coronary atherosclerosis
and calcification, the frequency of atrial fibrillation in aging athletes, and the possibility that exercise
may be deleterious in individuals genetically predisposed to such cardiac abnormalities as long QT
syndrome, right ventricular cardiomyopathy, and hypertrophic cardiomyopathy. This review is to
our knowledge unique because it addresses all known potentially adverse cardiovascular effects of
endurance exercise. The best evidence remains that physical activity and exercise training benefit
the population, but it is possible that prolonged exercise and exercise training can adversely affect
cardiac function in some individuals. This hypothesis warrants further examination.
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I. INTRODUCTION AND OVERVIEW

Regular physical exercise is part of a healthy lifestyle,
and a plethora of cross-sectional studies demonstrate
that habitual employment or leisure time physical activ-
ity is associated with reduced cardiovascular disease
(CVD) risk (241). Prospective clinical trials proving that
physical activity reduces CVD incidence have not been
performed in healthy subjects because of multiple issues.
For example, the number needed to treat and the treat-
ment time required to document an effect is large, com-
pliance with assignment to active or sedentary behavior
would be difficult to enforce, and the cost of such a study
would be enormous. There are such randomized con-
trolled clinical trials among heart disease survivors, and
meta-analyses of these studies (41, 192, 258) are consis-

tent with the cross-sectional data in healthy individuals
suggesting that exercise reduces CVD.

The amount of physical activity required to alter cardio-
vascular function and to reduce CVD events is not de-
fined. It is likely that different exercise doses are required
to affect autonomic tone than cardiovascular dimen-
sions, for example. Most studies examining CVD events
show a graded decrease with progressively more exer-
tion. Even doses as low as 15 min of physical activity per
day appear to reduce CVD risk and all-cause mortality
(282). Higher physical activity levels further reduce mor-
tality risks, with the most active individuals demonstrat-
ing the best overall life expectancy (143, 214, 282). Few
of these studies have included individuals engaging in
high-intensity, lifelong endurance activity, however, and
recent evidence suggests that such intense exercise may
actually increase CVD risk.

Regular, intense exercise causes structural, functional, and
electrical cardiac adaptations, which are considered benign
and comprise the clinical constellation of findings known as
the athlete’s heart. These adaptations may also have delete-
rious effects. Cardiac biomarkers are acutely increased by
exercise, and atrial fibrillation, myocardial fibrosis, and

Physiol Rev 96: 99–125, 2016
Published November 25, 2015; doi:10.1152/physrev.00029.2014

990031-9333/16 Copyright © 2016 the American Physiological Society



coronary artery calcification appear more common in older
athletes compared with their inactive peers.

The popularity of endurance exercise races and the average
age of its participants have increased worldwide over the
last three decades. Completing a 42-km marathon or simi-
lar endurance events has become a personal goal for many
individuals. This provides an impetus for both the medical
and lay communities to understand the effect of endurance
exercise on cardiac health. This review summarizes recent
research on the effects of acute and lifelong endurance ex-
ercise on the heart and the possible risk of exercise in some
individuals and patient groups. The goal is to explore the
possibility that prodigious amounts or high-intensity exer-
cise may not be beneficial and may even hurt some individ-
uals. Exploring this possibility may ultimately help in mak-
ing clinical decisions on the value of exercise in physically
active individuals. This review is to our knowledge unique
because it addresses all known potentially adverse cardio-
vascular effects of endurance exercise.

II. IMPACT OF EXERCISE ON CARDIAC
HEALTH

The Greek physician Hippocrates (460-375 B.C.) recog-
nized the contribution of physical activity to health: “All
parts of the body, if used in moderation and exercised in
labours to which each is accustomed, become thereby
healthy and well developed and age slowly; but if they are
unused and left idle, they become liable to disease, defective
in growth and age quickly.” More than 2000 years later in
1953, Morris and colleagues confirmed Hippocrates’ opin-
ion on the beneficial effects of exercise on health by dem-
onstrating that conductors on London’s double-decker
buses had a lower risk of sudden cardiac death (SCD) than
the physically inactive bus drivers (161). Multiple large ep-
idemiological trials have subsequently demonstrated a
strong, inverse relationship between the amount of physical
activity and CVD events and overall mortality (119, 182–
184, 194). These results are consistent with evidence that
habitual physical activity reduces CVD risk factors includ-
ing blood pressure, serum triglycerides and insulin resis-
tance (66, 262). Powell et al. (194) used the criteria that are
employed to prove causation in the absence of clinical trial
data to demonstrate that the relationship between physical
activity and cardiac disease was strong, consistent from
study to study, preceded the CVD events, showed a gradient
of reduced risk with increasing exercise, was plausible, and
was coherent with the data that exercise improved CVD
risk factors. They concluded that increasing physical activ-
ity was causally related to lower rates of CVD.

Given this evidence for the health benefits of regular exer-
cise, clinicians, health care workers, and governments have
developed strategies to increase physical activity in the gen-
eral population (178). The American College of Sports

Medicine and the American Heart Association recommend
that adults perform moderate-intensity exercise for a mini-
mum of 30 min daily at least 5 days a week, or vigorous-
intensity exercise for a minimum of 20 min daily at least 3
days a week (86, 191). The majority of Americans (�66%)
fail to meet these criteria (191). On the other hand, partic-
ipation in endurance exercise races significantly increased
over the past decades (25, 91, 112). Approximately 4.8
million United States runners finished a running event in
1990, whereas more than 15.5 million race finishers were
counted in 2012 (FIGURE 1) (128) of whom 487,000 fin-
ished the 42-km marathon distance. It is likely that some of
this participation in competitive racing is driven by the step-
wise decrease in CVD risk with more exercise, or the con-
cept that more is better.

The evidence that more exercise is better is derived from
observational studies in the general population, few of
whom perform the amount or intensity of endurance exer-
cise performed by competitive athletes. The possibility that
very large amounts of exercise may be detrimental or the
idea that exercise may accelerate cardiac disease in suscep-
tible populations is a relatively new concept that we will
explore in this article.

III. ACUTE EXERCISE-INDUCED
CARDIOVASCULAR RISKS

A. Sudden Cardiac Death

There is general consensus that vigorous exercise acutely,
albeit transiently, increases the risk of SCD, but only in
individuals with underlying cardiac disease, either occult or
manifest (263). The largest studies demonstrating the risk
of exercise are the Physicians’ Health Study (PHS) (4) and
the Nurses’ Health Study (NHS) (283).

0

Year

18,000,000

16,000,000

14,000,000

12,000,000

10,000,000

8,000,000

6,000,000

4,000,000

2,000,000

1990 1995 2000 2005 2010 2011 2012

N
um

be
r o

f f
in

is
he

rs

Men
Women

FIGURE 1. Trends in United States race finishers 1990–2012.
(Data from Running USA.)
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The PHS examined SCD during and for 30 min after vigor-
ous exercise in 21,481 male physicians (4). Vigorous exer-
cise was identified at baseline by asking, “How often do you
exercise vigorously enough to work up a sweat?” The study
compared SCDs among the participants who did or did not
respond affirmatively to this question. PHS also used a
“nested case-control design” to compare SCD events within
an individual during the SCD hour of exertion (an esti-
mated 30 min of exercise plus the subsequent 30 min) and
during the hour before and after the exercise hour. There
were 122 SCDs in the total cohort over the 12 yr of fol-
low-up of which 23 were exercise-related: 17 during exer-
cise and 6 in the 30 min postexercise. The risk of an exer-
cise-related SCD using the individual case-control study
was 16.9% higher during vigorous exercise (P � 0.001),
with 95% confidence limits of 10.5 to 27.0%. The absolute
risk of an exercise-related SCD was extremely low, how-
ever, at only 1 death per 1.42 million hours of vigorous
exercise, but the absolute risk of a nonexertion SCD was
even lower at 1 per 19 million hours. The risk of an exercise-
related versus sedentary SCD decreased from 74 to 19 to 11
with increasing baseline physical activity of �1, 1–4, and
�5 vigorous exercise session per week. The increase in risk
during exercise and the decrease in this risk with exercise
sessions per week suggest that exercise acutely increases,
but ultimately decreases, the risk of SCD.

The NHS reported 288 SCDs among 84,888 woman over a
24-yr period and only 9 deaths occurred during moderate or
vigorous exertion (283). Moderate or vigorous exertion
was defined as any task requiring �5 metabolic equivalents
of task or METs (1 MET � 3.5 ml of O2 per min). The
absolute risk of an exercise-related SCD was extremely low
at 1 per 36.5 million hours of exercise compared with 1 per
59.4 million hours of low or no exertion. Nevertheless, in a
nested case-control study similar to that performed in PHS,
the risk relative (RR) of SCD was 2.38-fold higher (95%
CI�1.23–4.60, P � 0.01) during moderate or vigorous
exercise than during low or no exercise. This increased RR
of an exercise-related event disappeared among women ex-
ercising 2 or more hours weekly, again suggesting a de-
crease in risk with habitual exercise. Increased moderate to
vigorous exercise was also associated with a decreased long-
term overall risk of SCD when most biological variables
were not included (P � 0.006), but this was close to, but not
statistically significant, when multiple anthropometric and
historical parameters were included in the statistical adjust-
ment (P � 0.06). The observations that the risk of SCD
increases during moderate or vigorous exercise, but that
habitual exercise also decreases the SCD risk again suggests,
as in PHS, that exercise acutely increases, but ultimately
decreases, the risk of SCD.

Most studies have defined “vigorous exercise” as requir-
ing �6 METs (263), but the risk is probably not related
to the absolute exercise workrate but to the workrate

relative to that individual’s maximal capacity. Higher
relative workrates produce greater cardiac stress because
they require a higher percentage of the individual’s max-
imal heart rate and generate more catecholamine spill
over into the circulation. Increased catecholamine con-
centrations are arrhythmogenic. It is assumed that most
exercise-related SCDs are due to ventricular fibrillation,
but the pathological substrate for SCD varies with the
age of the victim.

Young individuals defined as those �30 or 40 yr of age die
during exercise primarily from inherited or congenital car-
diac conditions such as hypertrophic cardiomyopathy,
coronary artery anomalies, and right ventricular cardiomy-
opathy (RVCM), although acquired conditions such as vi-
ral myocarditis can also cause deaths in this age group (FIG-
URE 2) (145). There are also occasional instances of exer-
cise-related aortic rupture in individuals with congenial
connective tissue diseases such as Marfan syndrome. Much
of the data on exercise-related SCD in the young come
from studies of young athletes. One large United States case
series found that 44% of the deaths among young athletes
were attributable to definite hypertrophic cardiomyopathy
(HCM) or possible HCM (144). In contrast, ARVC is the
predominant cause of exercise-related in Italy (33). The
reasons for these differences are not clear. Italy has a man-
dated athlete screening program requiring a preparticipa-
tion ECG so it is possible that athletes with HCM are de-
tected, prohibited from competition, and therefore not at
risk for an exercise-related SCD. Alternatively, Italians
were among the first to recognize RVCM as a cause of
exercise-related death (261), so physicians may be more
aware of the disease and diagnose it more readily at autopsy
in that country.

Older individuals die during exercise primarily from coro-
nary artery disease (CAD) (263). Acute atherosclerotic
plaque erosion or rupture leading to acute coronary throm-
bosis is detected in most (263), but not all (109), previously
asymptomatic individuals who die or suffer a myocardial
infarction during exercise. Some apparently asymptomatic
individuals are found to have only advanced CAD without
evidence of acute plaque disruption, suggesting that cardiac
ischemia alone can also produce SCD during exercise (109).
Plaque disruption during exercise is attributed to exercise-
related increases in shear forces as well as increases in the
bending and flexing of the epicardial coronary arteries dur-
ing exercise (263). The flexing of the coronary arteries is
increased during exercise by the increase in heart rate. In
addition, the increase in left ventricular (LV) end-diastolic
volume (EDV) and the reduction in LV end-systolic volume
(ESV) require greater excursion and therefore bending of
the epicardial coronaries during exercise. This bending of
stiffened atherosclerotic arteries can produce or exacerbate
plaque fissuring and rupture. In contrast to asymptomatic
individuals, older individuals with prior CAD events can
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suffer recurrent CAD events or SCD during exercise from
plaque rupture or die from an arrhythmia originating from
a myocardial scar (263) or induced by ischemia (109).

The absolute incidence of SCD during exercise is low, but
not definitively defined because the low frequency of SCD
produces large confidence limits for any estimate. The an-
nual rate among young athletes in the United States has
generally been estimated at �1 death per 200,000 athletes
(129), although a rate of 1 death per year per 3,100 Na-
tional College Athletic Association Division I male basket-
ball players (83) has been reported. This suggests that 1 in
800 of these players would die during a 4-yr college career,
a frequency that appears improbable. The rate of exercise-
related SCD in previously asymptomatic adults has been
calculated as 1 per 15,000–18,000 (246, 264) individuals
per year. These estimates are derived from studies in Rhode
Island (264) and Seattle (246), but the estimates are based
on only 10 and 9 deaths, respectively. Nearly all studies of
exercise-related SCD identify few female victims. Exercise
can also produce acute myocardial infarctions (AMI) by the
same mechanical effects on the coronary arteries discussed
above (155, 289). The absolute incidence of AMI with ex-
ercise is not clearly defined, but �10% of AMIs in one series
were associated with vigorous physical exertion (76).

B. Cardiac Dysfunction and Cardiac Fatigue

The performance of endurance exercise acutely increases
the physiological demands on the heart. The initial sympa-
thetic nervous system response to exercise is a withdrawal
of parasympathetic vagal tone which produces the early
increase in heart rate (203). Subsequently, the sympa-

thetic nervous system is activated as evidenced by cate-
cholamine release at nerve endings and “spill over” of
epi- and norepinephrine into the systemic circulation.
These hormones further increase heart rate and cardiac
contractility, which increase stroke volume and cardiac
output. These responses increase cardiac output during
the initial phases of endurance exercise, but prolonged
endurance exercise can produce decreases in cardiac
function, known as “cardiac fatigue” (43). This possibil-
ity was, to our knowledge, first suggested by Bengt Saltin,
one of the pioneers of exercise physiology, who in 1964
reported decreases in stroke volume after 3 h of exercise
despite preserved blood volume (212). This decrease in
stroke volume with preserved blood volume distinguishes
cardiac fatigue from cardiovascular drift which refers to
further increases in heart rate and decreases in stroke
volume decrease during prolonged exercise due to loss of
fluids and circulating blood volume (292).

A meta-analysis including 294 cases from 23 studies re-
ported a relative 2% reduction in left ventricular ejection
fraction (LVEF) following endurance exercise (151). Re-
ductions in LVEF with exercise are reported most fre-
quently in untrained subjects performing moderate dura-
tion exercise (�3 h) and in trained athletes performing ul-
tra-endurance events (�10.5 h) (151). The reduction in
LVEF in these two groups was on average �5.5% and
�4%, respectively (151). Trained athletes performing mod-
erate (�3 h) or long duration (�6 h) exercise do not typi-
cally demonstrate changes in LVEF, but LVEF reductions
are frequently reported after exercising more than 6 h (27,
53, 125, 286). A recovery of LVEF to preexercise values is
typically observed within 48 h after exercise (147).
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FIGURE 2. Distribution of cardiovascular causes of
sudden death in 1,435 young competitive athletes.
ARVC, arrhythmogenic right ventricular cardiomyopathy;
AS, aortic stenosis; CAD, coronary artery disease; C-M,
cardiomyopathy; HCM, hypertrophic cardiomyopathy;
HD, heart disease; LAD, left anterior descending; LVH,
left ventricular hypertrophy; MVP, mitral valve prolapse.
[From Maron et al. (145), with permission from Ameri-
can Heart Association.]
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The mechanisms producing the decrease in LVEF after ex-
ercise are not clear, but several possibilities (230) alone or in
combination (236) have been proposed. Decreases in blood
volume could reduce cardiac preload reducing ventricular
performance without directly altering cardiac contractility
(151). Alternatively, exercise may produce myocardial dys-
function independent of volume changes. Decreases in LV
systolic strain and in absolute peak systolic twist have been
reported postexercise (174, 175, 180). These findings indi-
cate (transient) cardiac dysfunction. The cardiovascular re-
sponse to infused catecholamines is reduced following pro-
longed exercise, suggesting decreased �-adrenoreceptor
sensitivity (84, 229, 281). The decreased �-adrenoreceptor
sensitivity could explain the decreases in LV systolic strain
and absolute peak systolic twist (174, 175, 180). Other
possible explanations for the acute decrease in LVEF are
acute cardiac damage as discussed below and increases in
oxidative stress (273). These possible explanations are not
exclusionary so that multiple factor may contribute to the
decrease (236) (FIGURE 3).

Right ventricle (RV) function also acutely decreases with
extreme endurance exercise (12, 125, 169), and the de-
crease in RV function increases with exercise duration
(124). The acute effect of prolonged exercise on RV func-
tion appears to be greater than that on the LV (125, 169,
269). Wall stress is lower at rest in the RV than LV primar-
ily because the pulmonary artery systolic pressure is lower
than the systemic arterial pressure (126). The relative in-
crease in RV stress with exercise, however, is remarkably
greater in the RV because exercise produces a relatively
greater increase in pulmonic than aortic systolic pressure
(116, 126). This differential effect of exercise on the RV and
LV has not been widely appreciated, but one study noted a
125 versus 4% increase in wall stress during exercise for the

RV and LV, respectively (126). The thinner wall of the RV
(216, 218) may allow this increase in wall stress to affect
RV function more than the LV (126).

IV. EVIDENCE OF ACUTE MYOCARDIAL
INJURY

A. Creatine Kinase

Creatine kinase (CK) catalyzes the transfer of a phosphate
group from creatine phosphate to ADP producing ATP.
There are two CK subunits, “M” and “B,” reflecting their
muscle and brain predominance, respectively. CK is com-
posed of two subunits creating three isoforms: the ho-
modimers CK-MM and CK-BB and the heterodimer
CK-MB (31). Skeletal muscle contains 99% CK-MM and
1% CK-MB, cardiac muscle containing 79% CK-MM,
20% CK-MB, and 1% CK-BB and brain tissue contains
97% CK-BB and 3% CK-MB (210). The size of these pro-
teins prevents that they are exiting the cell so that increased
blood concentrations of CK indicate cell damage with mem-
brane injury.

CK-MB was widely used in clinical practice to diagnose
acute myocardial infarction (141, 204), but led to the over-
diagnosis of AMI in endurance athletes after prolonged ex-
ercise. Boston Marathon runners had elevations in total CK
and CK-MB immediately after the race (245). Such results
raised the possibility that prolonged endurance exercise
damaged the heart. Postexercise CK-MB elevations were
confirmed by others after prolonged swimming (254) and
running (48, 224), but the source of the CK-MB was not
clear. Skeletal muscle biopsies performed 3 wk after the
1981 Boston Marathon demonstrated that marathon par-
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FIGURE 3. Schematic representation of potential mechanisms for impaired cardiac function after prolonged
exercise. [Adapted from Shave et al. (235), with permission from Elsevier.]
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ticipants had increased levels of CK-MB in their gastrocne-
mius muscles compared with sedentary controls (8,455 �
1,235 vs. 3,993 � 846 U/g) (244). Fetal skeletal muscle
contains abundant concentrations of CK-MB prompting
the authors to suggest that athletes are repetitively injuring
their skeletal muscle, which is repaired by more embryonic
satellite cells, which have a high, more fetal-like CK-MB
content. These repair cells can also be injured by training
and competition releasing CK-MB. Increased satellite cell
concentration has also been demonstrated in runners’ skel-
etal muscle (275). CK-MB typically constitutes �1% of the
total CK in skeletal muscle tissue, but endurance athletes
may have 8% of their CK as CK-MB form (8). Furthermore,
the muscle CK-MB concentration increases with exercise
training, demonstrating that higher CK-MB concentrations
are not a constituent factor in endurance athletes, but an
adaptation to training (8).

These multiple lines of evidence suggest that elevated
CK-MB levels following endurance exercise originate from
skeletal muscle damage, and do not represent acute myo-
cardial injury. Cardiac troponin has replaced CK-MB as the
preferred diagnostic marker for AMI, and many clinical
laboratories no longer perform CK-MB measurements.
Nevertheless, when evaluating these new markers, re-
searchers and clinicians should remember that some “car-
diac damage markers” like CK-MB can originate from ex-
ercise-training induced changes in skeletal muscle.

B. Cardiac Troponins

The contractile apparatus of striated muscle is composed of
the troponin complex, the actin-based thin filament, the
myosin-based thick filament, and tropomyosin. The tro-
ponin complex is tadpole-shaped and composed of sub-
units, troponin C, troponin T, and troponin I (55, 221).
Approximately 90% of the troponin units are bound to the
tropomyosin strand; the remaining 10% are within the cy-
tosol of the cardiomyocyte (19). Skeletal and cardiac tro-
ponin C is identical, whereas the troponin I and T isoforms
are specific for either skeletal or cardiac muscle. This spec-
ificity in cardiac troponin (cTn) I and T make these proteins
suitable for detecting cardiac damage. Circulating cTn I and
T concentrations are extremely low in healthy subjects, but
markedly increase after cardiac injury. cTn is now the stan-
dard biomarker for diagnosing AMI (162, 259, 265).

Endurance exercise increases cTn, similar to the CK-MB
experience, raising the possibility that exercise produces
subtle myocardial injury. Initial reports using insensitive
measures of cTn suggested that an increase in cTn was an
infrequent phenomenon. For example, in what we believe is
the first report of exercise-induced cTn elevations with ex-
ercise, cTn exceeded the normal reference range in only 1 of
19 marathon participants (113). Subsequent studies using
more sensitive assays observed that 47–62% of athletes

after marathons (67, 75, 169), triathlons (202, 270), endur-
ance cycling (172, 238), and ultra-endurance races (125,
239) demonstrated cTn levels exceeding the value used to
diagnose AMI (199, 235). Exercise-induced cTn elevations
are not restricted to athletes or to prolonged endurance
events. cTn elevations also occur in healthy individuals
and those with cardiac disease after walking �30 km (56,
60), and in athletes after only 30 min of high intensity
exercise (237). The recent introduction of “high-sensitiv-
ity cTn assays” has further increased detection of cTn in
athletes, and we have shown exercise-induced cTnI in-
creases in every athlete studied after the 2011 Boston
marathon (FIGURE 4) (59).

The exercise-induced cTn elevations are greater with
younger age (67), presence of cardiovascular risk factors
(56), running inexperience (67), increased exercise duration
and exercise intensity (56, 99, 153, 169, 231, 235), and
increasing dehydration (95) with exercise. We combined
these factors and found that only younger age and longer
exercise duration predicted cTn increases in marathon run-
ners competing at similar intensities (57), and that exercise
intensity is the strongest single predictor of cTn release (58).
This observation suggests that the cTn exercise response is
directly related to the cardiac work of exercise since the
cardiac demand during exercise is primarily determined by
intensity.

The mechanisms mediating the exercise-induced cTn eleva-
tions are unknown, but there are several possibilities (284).
Exercise could increase cardiomyocyte membrane permea-
bility by mechanical stress (148), by the production of oxi-
dative radicals, or by preload-induced increases in stretch-
responsive integrins (64, 89). These changes in membrane
permeability would be transient and not affect myocyte
viability. Cardiac ischemia could cause proteolysis of the
cTn complex (146), permitting troponin degradation prod-
ucts to pass through the cellular membrane (64) without
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FIGURE 4. Exercise-induced increases in high-sensitive cardiac
troponin I (hsTnI) levels in participants in the 2011 Boston marathon
(n � 71). Each bar represents one subject, with all individuals dem-
onstrating an increase in hsTnI postexercise. [Adapted from Eijsvo-
gels et al. (59), with permission from Elsevier.]
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changes in membrane permeability. Alternatively, tempo-
rary ischemia produces cell bubbles or blebs in hepatic cell
membranes (78). These blebs are either reabsorbed or shed
into the circulation with reperfusion. Blebs in the circula-
tion could produce increases in plasma cTn, but it is not
clear if this bleb formation occurs with temporary ischemia
in cardiomyocytes (90). Furthermore, ischemia as a cause
seems unlikely since cardiac ischemia is not thought to oc-
cur in healthy individuals during exercise (54).

Cardiomyocytes are estimated to die and be replaced at a
rate of 0.5–1% per year depending on age (17). Recent
animal (21) and human (61) studies suggest that endurance
exercise training increases cardiomyocyte turnover making
it possible that dying cardiomyocytes could release their
cTn into the circulation. This process, if acutely accelerated
by prolonged or intense exercise, could explain the acute
increase in cTn. Cardiomyocyte apoptosis could also in-
crease cTn levels (167), but it is unlikely that endurance
exercise increases the rate of apoptosis since exercise train-
ing produces either no (102) or less (121) myocardial apo-
ptosis.

Myocardial cell necrosis is the most frequent cause of cTn
release in patients and could occur with endurance exercise.
Indeed, rats forced to swim strenuously for 5 h demon-
strated myocardial necrosis and inflammatory infiltrates at
necropsy (30), but strenuous swim training in rodents is
often accompanied by submergence and intermittent hyp-
oxia, which may have produced or contributed to the myo-
cardial necrosis. On the other hand, the magnitude and the
kinetics of cTn levels differ between endurance exercise ath-
letes and patients with myocardial injury. Athletes typically
demonstrate a biphasic response of cTn release (150), start-
ing within 60 min after the onset of exercise. The cTn ele-
vations in athletes are only moderate (199, 235) and return
to baseline within 72 h (222, 267). In contrast, the increases
in cTn in patients with AMI occur �2 h after the onset of
ischemia, greatly exceed the clinical cut-off value, and re-
main elevated for 4–10 days (107, 293), although milder
cardiac ischemia could produce changes similar to those
observed in athletes.

The increase in cTn after exercise could originate from non-
cardiac sources as with CK-MB. The cTnT concentration is
increased in some patients with skeletal muscle disease
without other evidence of cardiac injury (97). It is theorized
that muscle injury causes expression of skeletal muscle fetal
proteins, including cTnT, which enter the circulation after
exercise-induced recurrent muscle damage (20, 201). Ex-
pression of the cTnT in skeletal muscle has not been docu-
mented in athletes, and current cTnT assays should not
detect the regenerating isoform of cTnT (7). Furthermore,
skeletal muscle repair should not increase cTnI (97), which
may also increase after exercise and is more specific for
cardiomyocyte injury. Thus a noncardiac origin for cTn

increases postexercise is unlikely, but cannot be totally dis-
counted given the experience with CK-MB.

The prevalence and kinetics of cTn increases after exercise
suggest that this is a physiological and not a pathological
exercise response, but far fewer studies have examined the
relationship between cTn changes and myocardial function.
Most studies have not demonstrated a relationship between
cTn levels and LV dysfunction (74, 131, 220), although at
least one study has observed that higher cTnI levels are
associated with increases in the LV wall motion index (r �
0.77, P � 0.001) and larger peak strain rates (r � 0.45, P �
0.05) (125). At least two other studies observed that in-
creased postexercise cTnI (124) and cTnT (169) levels were
related to RV dysfunction. These relationships were modest
(r � 0.49, P � 0.002 and r � 0.70, P � 0.001, respectively),
and correlation does not prove cause and effect. Further-
more, any dysfunction associated with increased cTn ap-
pears transient. Cardiac magnetic resonance imaging (MRI)
with late gadolinium enhancement (LGE) performed �3
days after a marathon did not reveal any myocardial injury
or scar, despite the fact that cTnT levels were still elevated
in the athletes (163). Similarly, only 1 of 34 runners with
elevated cTn levels following a marathon (272) was de-
tected at 3 mo to have any cardiac abnormality after an
assessment which included biomarkers, ECG, rest and ex-
ercise echocardiographic assessments (272), and MRI with
LGE (220). The one athlete was found to have a previously
unknown coronary artery stenosis (272). Consequently,
available data suggest that the increases in cTn levels are not
associated with permanent cardiac damage or dysfunction.

C. BNP and NT-proBNP

The family of natriuretic peptides include neurohormones
that are predominantly produced in the heart. These pep-
tides are not stored in cardiomyocytes so their production is
a constant process (234). B-type natriuretic peptide (BNP)
and its cleaved inactive NH2-terminal fragment (NT-
proBNP) are secreted by the ventricles in response to cardi-
omyocyte stress produced by volume or pressure overload
(134). BNP increases natriuresis, vasodilation, and inhibi-
tion of sympathetic activity, thereby reducing ventricular
wall stress (23). Elevated levels of BNP and NT-proBNP
indicate cardiac dysfunction, making them valuable clinical
biomarkers for diagnosis, management, and risk stratifica-
tion of patients with cardiovascular disease (142, 266).

BNP and NT-proBNP levels at rest in endurance athletes are
similar to their untrained and age-matched peers (5, 219),
but increase 5- to 10-fold after exercise in subjects partici-
pating in endurance exercise events (88, 169, 171, 179,
217, 243). Some authors have attributed these increases to
either impaired cardiac function or subclinical myocardial
injury (179).
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The pattern of the exercise-induced BNP and NT-proBNP
release typically has the peak value immediately after exer-
cise and a return to baseline values within 72 h (114, 222).
As many as 65–77% of the participants in endurance events
demonstrate acute increases in NT-proBNP to values ex-
ceeding the upper reference limits (99th percentile) of the
assay (217, 220). The magnitude of the increase in BNP and
NT-proBNP levels is primarily dependent on exercise dura-
tion (217, 231), but increasing age (114, 171), lower levels
of fitness (88, 169, 220), and elevated baseline levels of
these biomarkers (211, 231) also affect the ultimate value.
In vitro models support the role of stress duration in deter-
mining the magnitude of BNP increases since the BNP re-
lease in stretched cardiomyocytes increases with the dura-
tion of the stretching (287). Exercise intensity does not af-
fect BNP and NT-proBNP release (132, 231) in contrast to
the observations with cTn release. Some have suggested a
“ceiling effect” for the relationship between BNP levels and
exercise intensity, meaning that BNP and NT-proBNP are
maximized at a low exercise intensity level so that further
increases in blood levels require accumulation over time
(132).

The larger increase in BNP levels with exercise duration and
in sicker cardiac patients suggested to early investigators
that the BNP increase indicated acute cardiac injury or car-
diac dysfunction (179). Early investigators also observed a
direct relationship between increases in cTn and BNP (179),
but this relationship has not been confirmed by others (88,
114, 217). The lack of a correlation between cTn and BNP
suggests that these are independent physiological responses
to exercise. An acute BNP release with exercise may be
designed to produce natriuresis, vasodilation, and less sym-
pathetic activity, thereby reducing ventricular wall stress.

Alternatively, BNP and NT-proBNP release may be in-
volved in the cardiac adaptations to exercise training (219).
Resting BNP levels increased in military cadets after 10 wk
of a high-intensity strength and endurance exercise training
program (158). These cadets also demonstrated an increase
in LV mass with training, but changes in LV mass were not
correlated with BNP levels. BNP and NT-proBNP levels
increase the most with exercise in the least trained athletes,
suggesting that the acute increase may help initiate a train-
ing response (88, 169, 220).

Few studies have examined the relationship between exer-
cise-induced BNP changes and cardiac function. Studies us-
ing sample sizes of only n � 14 (131), n � 17 (291), and n �
20 subjects (220) did not find a relationship between BNP
and a reduction in left ventricular function, whereas studies
using larger sample sizes of n � 27 (125), n � 40 (124), and
n � 60 (169) did suggest a weak but significant relationship.
Only one study investigated the effects of exercise on BNP
levels and both LV and RV function (124). There was a
significant correlation between postrace BNP levels and the

change in right (r � 0.52, P � 0.001) but not left ventricular
ejection fraction (r � 0.25, P � 0.13). This suggests that the
effects of exercise may be greater on the right ventricle (127)
as discussed elsewhere in this review.

The clinical implications of exercise-induced increases in
BNP and NT-proBNP levels are unknown, but elevations in
athletes are transient (114, 222) and NT-proBNP levels are
lower in collapsed marathon runners than in asymptomatic
peers, who completed the race (169, 242). Also, 95 of 99
collapsed marathon runners demonstrated NT-proBNP lev-
els within their age-adjusted limits (242), suggesting that
exercise-induced elevations in BNP and NT-proBNP are a
physiological phenomenon without direct clinical conse-
quences.

V. CARDIAC ADAPTATIONS DUE TO LONG-
TERM EXERCISE TRAINING

A. The Athlete’s Heart

The term athlete’s heart refers to the cardiac adaptations to
endurance exercise training that can include enlargement of
all four cardiac chambers (186). These cardiac adaptations
have generally been considered benign, but this assumption
may not be entirely correct (22, 72) as discussed below (see
sect. VIB).

B. Endurance Exercise Versus Strength
Training

Sports can be classified by the proportions of static and
dynamic exercise required. Dynamic (also called aerobic,
endurance, or isotonic) exercise primarily involves joint
movement, changes in muscle length, multiple rhythmic
contractions, and the generation of comparatively small
intramuscular forces, whereas predominantly static or
strength exercise generates larger intramuscular forces
(154). Intense, prolonged endurance exercise increases skel-
etal muscle oxygen demand which requires a systemic in-
crease in oxygen uptake and delivery. Rearranging the Fick
equation from cardiac output (CO) � oxygen uptake (VO2)/
arterial-venous oxygen difference (A–V O2 �) to VO2 �
CO 	 A–V O2 � demonstrates that the required increase in
VO2 can be satisfied by increases in both CO and the A–V
O2 �. Both increase acutely with exercise. Blood flow or
CO increases because of increases in heart rate and stroke
volume. Peripheral vascular resistance generally de-
creases, but systolic blood pressure usually increases be-
cause of the increase in CO (208, 209). Chronic endur-
ance training predominantly produces a volume load on
the left and right ventricles because of the increased
blood flow with endurance exercise. In contrast, the
acute cardiovascular responses to strength exercise are a
modest increase in VO2 and CO, but substantial increases
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in peripheral vascular resistance and systolic blood pres-
sure. The increased peripheral vascular resistance and
increased blood pressure produced by strength exercise
predominantly produces a pressure load on the left and
right ventricles (160).

C. Cardiac Dimension Changes in Endurance
Athletes and With Exercise Training

Echocardiographic studies confirm that the cardiac adapta-
tions to chronic endurance and strength exercise training
mimic the cardiac response to volume and pressure over-
load, respectively. Prospective exercise training studies
demonstrate that endurance training increases left ventric-
ular internal dimensions with little change in LV wall thick-
ness (10). In contrast, strength exercise training increases
LV wall thickness with little effect on LV cavity dimensions
(193). The duration of most prospective exercise training
studies cannot, however, replicate the effects of prolonged
exercise training, such as that performed by endurance ath-
letes, on cardiac dimensions.

Elite Italian athletes are required to undergo periodic car-
diovascular screening (188). Researchers have used the
echocardiographic results obtained from these evaluations
to examine the upper limits of cardiac adaptations to exer-
cise training. Athletes competing in endurance sports dem-
onstrated markedly enlarged LV and left atrial (LA) diam-
eters but little increase in LV wall thickness. Among 1,300
Italian athletes, 45% had LV end-diastolic internal diame-
ters (LVEDD) �55 mm, the upper limit of normal (ULN)
used in most clinical echocardiographic laboratories, and
14% had an LVEDD �60 mm (186). Also, among 1,777
Italian athletes, 20% had a LA diameter �40 mm, the ULN,
and 2% had values �45 mm (189). In contrast to the in-
creases in chamber diameter, among 738 male and 209
female Italian athletes, only 16 men had an LV wall thick-
ness �12 mm, the ULN used for this parameter (190). The
increase in LVEDD was greater in athletes participating in
endurance sports and correlated inversely with heart rate
(r � �0.37, P � 0.001) and directly with BSA (r � 0.76,
P � 0.001) (186). The direct relationship with BSA indi-
cates that not all of the increases in chamber dimensions in
these cross-sectional studies are due to exercise training
alone and that some of the enlargement may be due to
characteristics that selected individuals for athletic achieve-
ment.

Gender and race affect the cardiac dimensions in athletes.
Female athletes have smaller LV and LA diameters and are
less likely to demonstrate LV wall thickness �ULN (187,
189, 268). LV wall thickness is also greater in black athletes
(14, 185).

Fewer studies have examined RV size in athletes and pro-
spectively with exercise training in part because echocardio-

graphic examination of the RV is more difficult than with
the LV. Right ventricular size and volume also increase with
exercise training (38, 218), and the changes in RV size may
be relatively greater than the LV changes (126) (FIGURE 5).
The ratio of RV and LV end-systolic volumes is greater in
endurance athletes than in sedentary controls, suggesting
that RV enlargement with exercise training is proportion-
ally greater than the LV enlargement. Similarly, the ratio of
RV to LV mass is also greater in the endurance athletes.
This may reflect the relatively greater RV than LV wall
stress produced acutely by exercise that was discussed
above (see sect. IIIB). Only modest increases in RV dimen-
sions are reported in strength-trained athletes (39). LV dia-
stolic dysfunction may contribute to increased pulmonary
artery pressure and the decrease in RV systolic function seen
postexercise (180). These changes resolve, however, within
a week after exertion (124).

Very few studies have examined the right atrial (RA) size,
but those that are available also demonstrate larger RA
dimensions in endurance-trained athletes than in age- and
sex-matched strength athletes and controls (38).

D. Cardiac Performance in Athletes and
With Exercise Training

As presented above, VO2 requirements increase with the
exercise work rate. VO2 is determined by CO or the systolic
volume (SV) and heart rate, and by the A–V O2 �. Maximal
exercise capacity, or VO2max, is therefore a surrogate
marker of maximal SV or cardiac performance. The SV in
athletes, and after exercise training, is increased because of
the increased LVEDD also mentioned above.

Cardiac function depends not only on systolic function,
but also on how readily the ventricles fill during diastole.
The speed with which the ventricles fill depends on their
ability to relax rapidly, but also on other factors such as
pericardial and pulmonary mechanical restraint (68). In
fact, removing the pericardium in dogs increases end-
diastolic volume during exercise, maximal cardiac out-
put, and therefore maximal aerobic power (252). The
development of novel diastolic measurements has in-
creased the understanding of the processes involved in
LV filling and the changes in endurance athletes. LV fill-
ing is intrinsically related to systolic function. In fact,
systolic twisting of the myocardium is necessary prior to
untwisting and the initiation of diastolic suction. The
untwisting of the LV during the isovolumic relaxation
and early filling phases releases elastic energy stored by
the preceding systolic twisting and contributes to the
initial atrioventricular pressure gradient. This untwisting
has been related to LV pressure decay in dogs subjected
to pacing and dobutamine infusion (173). The storage of
energy during LV twisting appears to be fundamental to
supporting diastolic filling during maximal exercise by
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creating a suction-aided filling effect (213). Recent stud-
ies demonstrated increased untwisting rates in endurance
athletes participating in kayaking, canoeing, and rowing
compared with patients with hypertrophic cardiomyop-
athy (115), suggesting that this also could help distin-
guish physiological adaptations from pathology.

Endurance athletes tend to have longer isovolumic-relax-
ation times (28) leading to rapid ventricular filling that is
represented by the E wave measured by Doppler echocar-
diography. Diastasis occurs after early diastolic filling.
This tends to be quite long in athletes with slow heart
rates, but it progressively shortens as the HR increases.
The rate at which the LV filling pressure rises during late
diastole depends on the myocardial compliance. Finally,
atrial contraction occurs generating an additional pres-
sure gradient depending on the cardiac output, the blood
remaining in the atria at the end of diastole, and myocar-
dial and pericardial compliance. The A wave measured

by Doppler echocardiography represents the atrial con-
traction contribution to the LV filling. Historically, the
E/A mitral inflow velocity ratio has been used to evaluate
diastolic function. The E/A ratio of virtually all endur-
ance athletes is �1.0, but can be as high as 4.8 in some
athletes. The increased ratio is mainly due to a decrease
in the A wave velocity. This implies that at rest, the
relative contribution of the atrial contraction is lower in
trained athletes, since most of the LV filling occurs in the
early diastole and during diastasis particularly at slower
HR (28). These filling patterns could mimic the restric-
tive filling pattern seen in cardiomyopathies, but should
not raise suspicion of pathology even in the presence of
left atrial enlargement. In contrast, E/A ratio values �1.0
suggest a nonphysiological condition in a trained athlete.
The E/A ratio, however, is not specific and is affected by
heart rate, loading conditions, and pressure gradients.
The normal Doppler tissue imaging (DTI), a normal cal-
culated pulmonary artery systolic pressure, and the over-

Characteristic Adaptations                   Characteristic Adaptations 

Normal “Pre-training”
Cardiac Structure and Function

Right
Ventricle

Left
Ventricle

Endurance
Training

Strength
Training 

RV Dilation
+/- Mild RVH

Eccentric
LV Hypertrophy 

- Mild to Moderate Eccentric LVH and RV dilation
- Biatrial enlargement
- Normal to slightly reduced resting LVEF
- Normal or enhanced Early LV Diastolic Function
- Normal or enhanced LV twisting / untwisting  

- Mild concentric LVH but No RV remodeling
- Normal to mildly enlarged left atrial size
- Normal to hyperdynamic resting LVEF
- Normal to slightly reduced early LV diastolic function
- Compensatory increase in late LV diastolic function 

RV No Δ Concentric LV
Hypertrophy 

FIGURE 5. Summary of exercise-induced remodeling of the left and right ventricle. Endurance training
increases left ventricular internal dimensions with little change in LV wall thickness (10), whereas strength
training increases LV wall thickness with little effect on LV cavity dimensions (193). [From Weiner and Baggish
(279), with permission from Elsevier.]
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all clinical picture should be used to avoid misclassifying
diastolic indexes in athletes as pathological.

DTI can sample areas of the myocardium near the mitral
annulus and determine myocardial velocities both during
systole and diastole. It is particularly helpful when other
diastolic indexes are indeterminate. A ratio of transmitral E
velocity to the tissue Doppler e= velocity directly correlates
with invasive measurements of the pulmonary capillary
wedge pressure, such that an E/e= greater than 15 predicts
an LV end-diastolic pressure of more than 15 mmHg (166).

Few studies have examined longitudinally the effect of
exercise training on RV and LV diastolic function (10,
168, 280). Studies of collegiate rowers and American
football players before and after training demonstrate
that rowers developed biventricular dilation with en-
hanced diastolic function, whereas football players de-
veloped isolated, concentric left ventricular hypertrophy
with diminished diastolic relaxation (10). Similarly,
cross-sectional studies comparing endurance athletes
with matched controls demonstrate increased early dia-
stolic velocities (29), a shift in the pattern of ventricular
filling towards early diastole despite LV hypertrophy (40,
52), and an association of peak LV inflow velocity with
LVEDD (37) and stroke volume (77). These findings are
all consistent with enhanced diastolic function. The lim-
ited data examining diastolic function in strength-trained
athletes suggest that there is either no change or relative
impairment of LV relaxation (10).

Several lines of evidence suggest that LV diastolic function
is reduced after �1 h of endurance exercise (151). The
magnitude of the diastolic dysfunction does not seem to be
related to changes in heart rate, blood pressure, or LVEDD
(151), and it has been suggested by the a few echocardio-
graphic indexes of diastolic dysfunction (74, 174, 175,
181). Most studies (105, 111, 233, 286), but not all (170),
demonstrate normalization of diastolic function within 24
h after exercise. Thus the decrease in LVEF and diastolic
function appear to be transient. Consequently, the effect of
exercise on LV function appears to be a physiological re-
sponse with limited, if any, clinical significance (285).

Athletes have more compliant and distensible ventricles
than nonathletes. The increased distensibility observed in
athletes affects the pressure-volume loop allowing filling of
the ventricle at lower-than-normal pressures because the
lower part of the loop is shifted downward because of in-
creased chamber compliance. This permits a lesser pressure
rise at greater volumes. It also shifts the LV end-diastolic
pressure (LVEDP)/SV (Frank-Starling) curve leftward so
that small increases in LVEDP translate into large changes
in SV during submaximal exercise. This has been demon-
strated in studies using direct invasive measurements of fill-
ing pressures and rapid increases and decreases in ventric-

ular filling using saline infusions and lower body negative
pressure, respectively (133).

E. Implications of the Changes in Cardiac
Dimensions and Function

A fundamental question that emanates from this review is
whether exposure to lifelong endurance exercise and the
cardiac adaptation that it engenders can deleteriously affect
cardiovascular health. Case series and cross-sectional stud-
ies of cardiac function, albeit important in the understand-
ing of these adaptations, do not provide cause and effect
evidence to answer this question. More epidemiological and
longitudinal studies on cardiovascular risk in endurance
athletes exposed to the highest intensity of endurance exer-
cise over prolonged period of time are required to resolve
this issue.

The increases in cardiac dimensions and function discussed
above are required for superior exercise performance and
are not associated with deleterious side-effects. The possi-
bility that increased LV and RV dimensions from exercise
training contribute to cardiac disease in a minority of sus-
ceptible individuals and that increases in atrial size contrib-
utes to atrial fibrillation are discussed subsequently.

VI. POTENTIAL MALADAPTATIONS TO
LIFELONG EXERCISE

A. Atherosclerosis and Coronary Artery
Calcification

Atherosclerosis is a complex process in the arterial wall that
involves a large number of growth factors, cytokines, and
vasoregulatory molecules (207). The deposit of fatty streaks
in the intima layer of the vessel wall is the earliest recogniz-
able lesion and precedes plaque formation and expansion of
the lesion (276). Atherosclerotic plaques have two common
phenotypes with different potential clinical sequelae. Stable
plaques are characterized by a small lipid pool, low concen-
trations of inflammatory cells, and a thick fibrous cap (135).
Such plaques may progress leading to coronary narrowing
and conditions such as angina pectoris or exercise-induced
cardiac ischemia. These plaques are less vulnerable to
plaque disruption and therefore less likely to produce
thrombosis and an acute coronary syndrome (ACS) such as
unstable angina pectoris, AMI, or SCD. Vulnerable plaques
are characterized by a large lipid pool, high inflammatory
activity covered by a thin fibrous cap, and are more likely to
rupture and produce ACS (42, 65). The progression of
plaques usually takes decades, and the presence of athero-
sclerosis does not necessarily cause clinical symptoms
(135). Atherosclerotic coronary artery disease (ASCAD) is
the leading cause of cardiovascular events and death world-
wide. The arterial injury produced by atherosclerosis often

CAN LIFELONG EXERCISE HURT THE HEART?

109Physiol Rev • VOL 96 • JANUARY 2016 • www.prv.org



leads to calcification of the plaques, and osteogenic proteins
have been detected in atherosclerotic lesions (2). The extent
of coronary artery calcification is, therefore, a marker of
ASCAD and is used both to assess the degree of atheroscle-
rosis and to predict prognosis (24, 255).

Exercise training reduces all of the major risk factors for
CAD (262) and physical activity reduces morbidity and
mortality from ASCAD (194, 262). Despite strong risk fac-
tor evidence that exercise should reduce ASCAD (215, 262)
and overwhelming evidence that physical activity reduces
ASCAD clinical events (94, 159), there has long been con-
troversy whether habitual physical activity levels actually
reduce or retard the atherosclerotic process (103). A 1960
autopsy study of 207 white men aged 30–60 yr demon-
strated that the degree of coronary atherosclerosis increased
with age, but that there was no difference in the degree of
ASCAD between physically active and sedentary men
(248). Recent studies have demonstrated that atheroscle-
rotic plaques are present in the carotid or peripheral arteries
of 90% of marathon runners 50–75 yr old (118) and that
carotid intima media thickness (cIMT), a marker of athero-
sclerosis, is not different in young, middle-aged, and veteran
endurance-trained athletes and age-matched sedentary con-
trols (18–77 yr old) (256) or physically inactive spouses
(46 � 12 yr old) (257). Such results, suggesting no reduc-
tion in the atherosclerotic process, contrast with studies
showing reduced markers of ASCVD. These studies include
evidence that 6 mo of exercise training reduces cIMT (249)
and that vigorous exercise reduces the rate of cIMT progres-
sion compared with less active controls after 3 (117) and 6
(198) yr of exercise training.

Coronary artery calcification (CAC) scoring provides a
more direct assessment of coronary artery atherosclerosis
than measures of peripheral vascular disease such as cIMT.
CAC can be determined by computed tomography (CT)
and scored using Agatston units. A CAC score of zero indi-
cates a very low 10-yr risk of an ACS event (18), whereas
increasing CAC scores are linearly related to an increased
risk of a cardiac event (47). Increased physical activity is
associated with reduced CAC scores in most (44, 45, 251),
but not all (81), cross-sectional studies in the general pop-
ulation. At least one longitudinal study has also confirmed
that increased physical activity is associated with reduced
CAC scores (70). Studies demonstrating reductions in CAC
scores have generally examined mild to moderate levels of
exertion. Paradoxically, several studies have suggested that
CAC may be increased in long-term, middle-aged endur-
ance athletes. A comparison of 108 German men �50 yr of
age, who had participated in �5 marathons, had CAC
scores greater than 216 controls, matched for age and Fra-
mingham risk factor score (FRS) (157). This difference was
absent when men were not matched for FRS, raising the
possibility that the marathoners relatively recently adopted
an active lifestyle, which improved their risk factors and

FRS, whereas their CAC scores reflected their prior expo-
sure to higher risk factors. Against this explanation is the
observation that American men who completed �1 mara-
thon/yr over the previous 25 years demonstrated larger
CAC volumes than a sedentary control group (83.8 � 67.7
vs. 44.0 � 36.8 mm3, P � 0.01) (228). The runners were
older, however (59 � 7 vs. 55 � 10 yr, P � 0.05), which
could account for some of the difference.

Several possibilities could explain the higher CAC scores in
the marathoners. The marathoners could have higher val-
ues of unmeasured risk factors or could have been exposed
to higher risk factor levels prior to their exercise training as
suggested by the German study. Alternatively, the faster
heart rate and SBP during exercise training could have ac-
celerated the atherosclerotic process in the runners. It is also
possible that increased CAC may not reflect increased risk
in the runners. Coronary calcification may stabilize the cor-
onary plaque raising the possibility that the exercise train-
ing increases plaque stability. Supporting this concept is the
recent observation that the extent of CAC measure by the
CAC score increases the risk of a cardiac event, whereas
increased density of the CAC deposit actually reduces risk
(35). The CVD risk is considerably lower in individuals
with densely calcified plaques compared with non- or par-
tially calcified plaques (35, 93). This hypothesis is sup-
ported by the finding that statins promote calcification of
atherosclerotic plaques even though they reduce plaque
burden and thereby promote plaque stability (196). Exer-
cise may cause similar effects on plaque composition, sug-
gesting that the higher CAC scores in athletes contribute to
plaque stabilization and subsequent risk reduction for car-
diovascular morbidity and mortality. Finally, it is possible
that the same amount of atherosclerosis in an athlete pro-
duces more CAC. Exercise acutely increases parathyroid
hormone levels (13, 138). Parathyroid hormone increases
circulating calcium levels, which could accelerate the calci-
fication of atherosclerotic lesions (80).

B. Myocardial Fibrosis

Myocardial fibrosis is characterized by the accumulation
of collagen in the extracellular matrix of the heart (49).
Myocardial fibrosis most commonly occurs after myo-
cyte injury from ischemia, but can have nonischemic
causes (100). Myocardial fibrosis is divided into reactive
interstitial fibrosis, infiltrative interstitial fibrosis, and re-
placement fibrosis (see FIGURE 6) (149). In reactive inter-
stitial fibrosis, myocytes synthesize collagen in response
to cardiac stress that can be produced by aging, cardiac
conditions causing LV pressure or volume overload, and
metabolic factors including increased activity of reactive
oxygen species, the renin-angiotensin aldosterone sys-
tem, and the �-adrenergic system (149). In infiltrative
interstitial fibrosis, insoluble proteins such as amyloid in
amyloidosis (232) or glycosphingolipids in Anderson-
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Fabry disease (295) deposit in the cardiac interstitium. In
replacement fibrosis, myocytes damaged by such factors
as ischemia or viral infection are replaced by collagen
(253). Both reactive and infiltrative interstitial fibrosis
may progress to replacement fibrosis (277). Replacement
fibrosis can be localized when produced by cardiac isch-
emia following a myocardial infarction (MI) resulting in
a “scar” formation, or it can be diffuse following condi-
tions such a viral myocarditis.

Myocardial fibrosis reduces ventricular compliance leading
to heart failure with a preserved ejection fraction (HFpEF),
atrial enlargement, and atrial fibrillation. Myocardial fibro-
sis is also present in systolic heart failure. Several studies
demonstrated that the presence of myocardial fibrosis in-

creases the risk for future cardiac events and mortality (122,
152, 176, 278).

At least one animal study suggests that prolonged or life-
long exercise may produce or accelerate myocardial fibro-
sis. Rats forced to run for 16 wk, a time deemed equivalent
to 10 yr of endurance exercise training in humans, devel-
oped eccentric cardiac hypertrophy, diastolic dysfunction,
atrial dilation, and collagen deposition at the right ventricle
and both atria (16).

Elite middle-aged and veteran endurance athletes (45–75
yr old), who have exercised �10 yr at a competitive level
and currently run �30 miles/wk, demonstrate increased
plasma markers of collagen syntheses and degradation,

FIGURE 6. Pathophysiology of myocardial fibrosis. [From Mewton et al. (149), with permission from
Elsevier.]
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including tissue inhibitor of matrix metalloproteinase
type I (TIMP-1), carboxy-terminal telopeptide of colla-
gen type I (CITP), and carboxy-terminal propeptide of
collagen type I (PICP), compared with age-matched sed-
entary controls (136). The TIMP-1 levels were greatest in
those athletes with LV hypertrophy. This biochemical
evidence of abnormal collagen turnover suggests that
myocardial fibrosis may be present in these veteran en-
durance athletes (136).

Myocardial fibrosis can be directly visualized in humans
using MRI after the injection of gadolinium. Fibrotic areas
of the heart entrap the gadolinium so that it can be visual-
ized on late imaging in a process called late gadolinium
enhancement (LGE). LGE was detected in 12 of 102 Ger-
man marathon runners (12%) compared with only 4 of 102
age-matched controls (4%), but this was not statistically
different (P � 0.077) (22). Five of the runners had an LGE
pattern typically found in CAD patients, despite being
asymptomatic, and seven had a non-CAD pattern. The
presence of fibrosis in endurance exercise athletes was con-
firmed in studies from Australia (5/40, 13%) (124) and the
United Kingdom (6/12, 50%) (290). Not all studies have
supported the hypothesis that life-long endurance athletes
have increased LGE (82, 163, 177, 269). Differences in age,
habitual physical activity levels, and study size may contrib-
ute to the discrepancy between studies. For example, ath-
letes with LGE tend to be older than athletes without LGE
(124). The prevalence of LGE increases with years of com-
petitive exercise training (290) and the number of com-
pleted marathons [odds ratio (OR) � 1.65, 95% confidence
interval (CI) � 1.08–2.52] (157). This increase could be a
factor of age or represent a potentially deleterious effect of
exercise training.

The significance of myocardial fibrosis in athletes is cur-
rently unknown. Athletes with LGE have higher CAC
scores than runners without LGE (CAC score � 192 vs. 26,
P � 0.005) (157) and a lower coronary event free survival
during 25 mo of follow-up (75 vs. 99%, P � 0.001) (22).
The fibrosis in several of these studies is located where the
right ventricle attaches to the intraventricular septum and
could represent mild fibrosis from constant flexing at this
“hinge” point produced by both exercise and the right ven-
tricular enlargement that attends long-term endurance ex-
ercise training (123). This is discussed further in section
VIG.

The animal study note above observed that most markers of
myocardial fibrosis returned to baseline after discontinua-
tion of exercise training (16). This suggests that the fibrosis
is of the reactive phenotype, which is an intermediate
marker of disease severity and is reversible in patient pop-
ulations (50, 139, 140). Additional studies in humans are
required to determine if the fibrosis is reversible with exer-

cise cessation and to determine the clinical significance of
persistent fibrosis in athletes.

C. Atrial Fibrillation

Atrial fibrillation (AF) refers to chaotic electrical activity
that replaces normal sinus rhythm and eliminates the con-
tribution of atrial contraction to LV filling. AF is the most
common arrhythmia in the United States and affects �6
million individuals. (156) The risk of AF increases with age,
and the incidence of AF in individuals �65 yr of age is �2%
per year (104, 206). The prevalence of AF will increase with
the increasing age of the population (206).

AF can be classified as paroxysmal, persistent, or perma-
nent (69). Paroxysmal AF is defined as AF that reverts to
normal sinus rhythm within 7 days, and �50% of parox-
ysmal AF patients do so within 24 h. Persistent AF is defined
as AF that persists beyond 7 days. Permanent AF is defined
as AF that is long-standing, usually defined as �1 yr and
which can either not be converted to sinus rhythm or when
cardioversion has not been attempted (69). These three
forms of AF generally progress from one to the other if the
patient does not receive medical intervention.

Risk factors for AF include any condition that increases left
atrial size or pressure (247), such as hypertension, left sys-
tolic or diastolic heart failure, and stenosis or regurgitation
of the mitral valve. Increases in both parasympathetic and
sympathetic tone also increase the risk of AF (247). In-
creased parasympathetic tone shortens the atrial refractory
period by decreasing the inward current of the L-type cal-
cium channels (294). Shortening the atrial refractory period
shortens the excitation wavelength and facilitates atrial re-
entry. Increased sympathetic activity, such as that produced
by exercise, shortens the atrial action potential, thereby
increasing the risk of AF. Increased adrenergic tone may
also produce micro reentry atrial circuits, which can initiate
the AF (34). Hyperthyroidism increases cardiac sensitivity
to catecholamines and can provoke AF. Drugs that mimic
increased sympathetic activity such as cocaine and caffeine
can also produce AF.

AF decreases the atrial contribution to LV filling and de-
creases CO. The decrease in CO can decrease exercise tol-
erance especially in those with resistance to LV filling such
as patients with mitral valve stenosis or LV hypertrophy. AF
can also cause “tachycardia mediated cardiomyopathy” if
the ventricular response rate is not controlled (79). Tachy-
cardia-mediated cardiomyopathy refers to a reversible de-
crease in cardiac systolic function produced by persistently
rapid heart rates.

The most devastating complication of AF is systemic throm-
boembolism. Clots form in the left atrium, and specifically
in the left atrial appendage, because of the blood stasis
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produced by the AF. Approximately 15% of strokes in the
United States are associated with AF (200). These strokes
tend to be large and therefore devastating. For this reason,
many patients with AF are placed on anticoagulant therapy
depending on a risk/benefit analysis of the patient. Notably,
the risk of thromboembolism exists in all AF categories
including paroxysmal AF probably because patients with
paroxysmal AF have more and longer episodes than they
appreciate and because clots are ejected when sinus rhythm
is restored.

The relationship between physical activity and atrial fibril-
lation is complex and suggests a U-shaped relationship
(250). Low levels of exercise are associated with a reduced
prevalence of AF possibly by reducing factors producing AF
such as hypertension. Physical activity is associated with
reduced incidence of AF in women (62), but this relation-
ship is not significant after controlling for body mass index.
Similarly, light to moderate exercise was associated with a
lower relative risk of new-onset AF in the cardiovascular
health study (164). In contrast, long-term high levels of
endurance exercise appear to increase the incidence of AF.
Among participants in the Physicans Health Study, the risk
of AF increased with the number of days per week of vig-
orous physical activity (3). There are also a systematic re-
view (247) and a meta-analysis (1) showing an increase in
AF among endurance athletes with the relative risk in the
athletes increased fivefold (OR � 5.29, 95% CI � 3.57–
7.85, P � 0.0001) (1). This risk seems to be higher in men
than in women (288). The systematic review (247) and
meta-analysis (1) were based on the same studies and com-
pared athletes with the general population. Even among
athletes, however, the risk appears to increase with the
amount of endurance activity. Participants in a 90-km Nor-
dic ski race (the Vasaloppet) during 1989–1998 were fol-
lowed until December 2005 using national health registries
(6). There were 52,755 Vasaloppet participants of whom
919 were hospitalized for an arrhythmia during follow-up.
Those completing five or more races were more likely to
experience any arrhythmia compared with those complet-
ing only one (OR � 1.3, 95% CI � 1.08–1.58). This result
was largely due to more frequent AF (OR � 1.29, 95% CI
� 1.04–1.61) and bradyarrhythmias (OR � 2.1, 95% CI �
1.28–3.47). Those with the fastest finishing times relative to
the winner were also more likely to be hospitalized for any
arrhythmia (OR � 1.3, 95% CI � 1.04–1.62) again due to
more frequent AF and bradyarrhythmias, but separately the
AF and bradyarrythmias were not statistically significant
(OR � 1.2, 95% CI � 0.93–1.55; OR � 1.85, 95% CI �
0.97–3.54, respectively). AF was not more frequent in a
study of young, elite Italian athletes (189), but this obser-
vation suggests that AF requires either increased age, per-
sistent athletic participation, or probably both.

The mechanism increasing AF in endurance athletes is not
defined, but probably is a combination of increased para-

sympathetic tone and left atrial enlargement especially in
older endurance athletes. AF can also be provoked by exer-
cise via sympathetic stimulation. This may be produced by
intense exercise alone, but is often exacerbated by other
sympathomimetic agents.

D. Other Arrhythmias

AF is the arrhythmia that appears most consistently to be
associated with life-long physical activity. Atrial flutter is a
right-sided macro-reentrant atrial arrhythmia that most
commonly originates from the cavotricuspid isthmus in the
right atrium. Paroxysmal atrial flutter has been reported in
10% of former endurance athletes (92), but is often com-
bined with AF in analyses of arrhythmias in athletes (11).

A slower resting heart rate (sinus bradycardia) is a well-
known cardiac adaptation to endurance training and ath-
letes may develop first- and second-degree heart block
(101). Third-degree heart block is unusual in athletes and
requires a careful evaluation (137), but some athletes may
develop transient third-degree heart block during sleep
when vagal tone is high. First-degree heart block refers to an
increase in the AV conduction time, second to intermittent
AV block of electrical conduction from originating the
atrium, and third to complete blockage of the passage of all
atrial beats to the ventricles. Several studies suggest that
these bradyarrhythmias persist after the athlete stops active
exercise training (6, 11). For example, the average heart rate
was lower among 62 former professional cyclists who par-
ticipated in the Tour de Suisse from 1955–1972 than in
golfers matched for age, weight, blood pressure, and car-
diac medications [66 � 9 vs. 70 � 8 beats per minute
(BPM), P � 0.004] (11). The cyclists had participated in the
Tour de Suisse 38 � 6 yr earlier. Evidence of sinus node
dysfunction, defined as a heart rate �40 BPM, atrial flutter,
placement of a pacemaker for bardycardia, or an R-R inter-
val �2.5 s, was present in 16% of the former cyclists but in
only 2% of the golfers (P � 0.006). A similar percentage of
cyclists and golfers spent �4 h weekly in aerobic exercise
(52 % vs. 44%, P � 0.47), but the cyclists did slightly more
endurance training. These results are similar to those from
the Vasaloppet study mentioned above, which observed an
increase in hospitalizations for bradyarrhythmias among
those skiers who participated in the most races (6).

Persistence of bradycardia and evidence of sinus node ab-
normalities after the cessation of intense exercise training
imply that either endurance athletes have innately different
cardiac electrophysiology before exercise training or that
prolonged endurance exercise remodels the cardiac electri-
cal system. These studies cannot, however, totally exclude a
persistently more active lifestyle and therefore more contin-
ued exercise training in the former endurance athletes.
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E. Long QT

The QT interval is an electrocardiographic measurement of
the time between depolarization and repolarization of the
cardiac ventricles. The QT interval is generated by currents
produced by the passage of potassium, calcium, and sodium
ions through cardiac ion channels (226). Both decreases in
the repolarizing K
 outward current and increases in the
depoloarizing sodium and calcium currents can increase the
QT interval (226). Abnormal increases in the QT interval
produce the long QT syndrome (LQTS), which can produce
polymorphic ventricular tachycardia, syncope, and SCD.
LQTS does not produce any structural cardiac changes and
is the likely cause of many SCDs in young people when there
are no pathological findings at autopsy. LQTS and other
defects in cardiac ion channel function are referred to clin-
ically as “channelopathies.”

Defects in at least 10 genes affecting cardiac ion channels
have been associated with LQTS, but 90% of LQTS pa-
tients have defects in one of three genes: KCNQ1, KCNH2,
and SCN5A (226). Defects in KCNQ1 are most prevalent
and produce LQTS-1 (226). Defects in KCNH2 and
SCN5A produce LQTS-2 and LQTS-3, respectively. Loss-
of-function mutations in KCNQ1 affect the IKS potassium
channel reducing the current generated by IKS (165). The
IKS channel is sensitive to adrenergic stimulation (165). A
normally functioning IKS channel shortens the QT interval
during increased adrenergic states such as physical exertion,
whereas patients with defective IKS channels cannot shorten
their QT duration during exercise and other situations with
increased adrenergic tone (36, 165). LQTS-1-3 differ not
only in terms of their genetic cause, but also in their pheno-
typic presentation. Approximately 75% of cardiac events in
individuals with LQTS-1 occur during exercise, whereas
�5% of these events occur during exercise in LQTS-2&3
patients (FIGURE 7) (226). Thus exercise is a trigger for
cardiac arrhythmic event in LQTS-1 patients.

Increased vagal tone appears to be a risk factor for cardiac
arrhythmia in patients with LQTS-1. LQTS-1 patients with
increased baroreflex sensitivity, a marker of increased vagal
tone, are more likely to have experienced at least one car-
diac arrhythmic event compared with those with less vagal
tone (227). Similarly, a greater reduction in heart rate in the
first minute after exercise is a marker of enhanced vagal
tone (36). LQTS-1 patients with the greatest reduction in
heart rate after exercise are more likely to have experienced
at least one cardiac arrhythmic event (36). Only patients
with defects in genes affecting the adrenergically sensitive
IKS potassium channel are affected (36, 227). Both studies
suggest that enhanced vagal tone increases the risk of ven-
tricular tachycardia and SCD in LQTS-1 patients. Exercise
training reduces heart rate in large part by increasing para-
sympathetic or vagal tone (26). Consequently, these studies
(36, 227) suggest that increases in vagal tone from exercise
training could increase arrhythmia risk in individuals with a
genetic predilection for LQTS-1. This possibility requires
more study, but some experts have recommended avoiding
repetitive exercise capable of producing an exercise training
effect in individuals with the mutations in KCNQ1 and
LQTS-1 (36).

F. Aortic Size and Root Dilatation

Exercise training increases the dimensions of all four mus-
cular cardiac chambers, but few studies have examined the
effect of exercise training on aortic diameter. Some have
suggested that exercise training may increase aortic diame-
ter (9, 296). This is an important consideration because
aortic dissection and rupture are a rare (144) but recognized
(87, 271) cause of sudden death during exercise, and the
risk of these events increases with increasing aortic diame-
ter. A meta-analysis examined aortic root diameters from
23 echocardiographic studies including 5,580 elite athletes
and 729 controls (96). The athletes included 1,506 endur-
ance trained, 425 strength trained, 213 combined strength
and endurance trained, and 3,436 mixed trained athletes.
Aortic root size was 3.2 mm greater at the sinuses of Val-
salva and 1.6 mm greater at the aortic annulus in the ath-
letes than in controls (P � 0.05 for both). The aortic diam-
eter at the annulus was 2.2 mm greater in the endurance
trained athletes than in controls (P � 0.05) and 1.5 mm
greater in strength trained athletes (P � 0.13). Too few
studies were available to perform similar measurements at
the sinuses of Valsalva. These results suggest that exercise
training increases aortic diameter, but longitudinal studies
are required to confirm these largely cross-sectional data
(96). Furthermore, these differences are small and unlikely
to have clinical significance. On the other hand, this effect
probably does have clinical significance in patients with
genetic connective tissue defects that predispose them to
aortic dilatation such as patients with Marfan syndrome
(197) who may experience an augmented effect from exer-
cise training. Also, the effect of long-term exercise training
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on individuals with bicuspid aortic valves, which has an
associated aortopathy (46), has not been examined to our
knowledge.

G. Arrhythmogenic RV Dysplasia

Arrhythmogenic RV dysplasia/cardiomyopathy (ARVC)
produces RV enlargement, reduced RV systolic function,
RV arrhythmias, and SCD (15). ARVC is responsible for up
to 20% of SCD in all young individuals (240) and for �4%
of SCDs in young athletes in the United States (145). ARVC
is the predominant cause of exercise-related sudden deaths
in the Padua region of Italy (260). Pathologically ARVC is
characterized by fibrous fatty replacement of normal myo-
cytes, primarily in the RV, although pathological changes
can be found in the intraventricular septum and LV (73).
Fatty infiltration can be seen with magnetic resonance im-
aging, which is used to help diagnose the condition (15).

Genetically ARVC has most consistently been related to
mutations in genes producing proteins involved in desmo-
somes and the adherens junction, those areas responsible
for myocyte to myocyte binding (110). Dysfunctional des-
mosomal proteins lead to cell breakdown and replacement
of myocardial cells by fat and fibrous tissue. Genetic defects
in desmosomal proteins including plakophilin, plakoglo-
bin, desmoglein, and desmoplain have been identified as
causes of ARVC (110). Predilection of the disease for the
RV is likely related to the thinner walls of this structure
compared with the LV, which permits stretching of the RV
and injury to the desmosomal myocyte connections.

The penetrance of ARVC within families is variable, sug-
gesting that environmental factors may affect manifestation
of the disease (98). There are at least two studies examining
the effect of exercise training on the development of ARVC
in animals (110) or humans (98) with genetic susceptibility
to the disease, and both suggest that exercise training accel-
erates appearance and progression of ARVC. Plakoglobin
connects the cytoplasmic component of the desmosome and
adherens junction to the intracellular cytoskeleton and con-
tractile myofilaments such as actin (110). Heterozygous
plakoglobin-deficient mice develop larger RV diameters, re-
duced RV function, and more RV arrhythmias mimicking
the clinical picture of ARVC (FIGURE 8) (110). Endurance
exercise training in this mouse model accelerates the ap-
pearance of RV enlargement and dysfunction (110).

Exercise training also appears to increase the penetrance of
ARVC in humans. Known carriers of a desmosomal muta-
tion (87 subjects, 46 men) with a mean age of 44 � 18 yr
were queried about their exercise habits after age 10 (98).
There were 56 endurance athletes in the cohort, defined as
participating in a sport requiring �70% of maximal aero-
bic capacity for �50 h/yr. The endurance athletes devel-
oped symptoms at a younger age (30.1 � 13 vs. 40.6 � 21.2

yr, P � 0.05). Also, more of the athletes with a genetic
abnormality met established criteria for the diagnosis of
ARVC (82 vs. 35%, P � 0.001). The athletes had a lower
lifetime survival free of heart failure (P � 0.004) and of
ventricular tachycardia (VT)/ventricular fibrillation (VF)
(P � 0.013) than the nonathletes. When evaluated by quar-
tiles of physical activity, individuals in the second, third,
and fourth quartiles had a 6.64-, 16.7-, and 25.3-fold
greater risk, respectively, of meeting the diagnostic criteria
for ARVC compared with the least active group (P � 0.05
for all). Furthermore, those individuals in the most active
group who reduced their activity levels had a reduced risk of
subsequent VT and VF compared with those who main-
tained a high level of activity.

Both studies require confirmation, but are consistent with
the concept that exercise training increases RV dimensions,
and that this enlargement stresses myocardial junctions.
This produces cellular damage in those with genetic defects
in proteins involved in cell to cell junctions.
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These results are also consistent with studies suggesting that
prolonged exercise training may produce RV cardiac
changes that mimic ARVC. As discussed in section IIIC, the
acute increases in pulmonary artery systolic pressure with
exercise is greater than the increase in systemic arterial pres-
sure producing relatively greater increases in RV than LV
wall stress (126). Also, the increases in RV volume and mass
appear to be proportionately greater than those in the LV
(126), again suggesting a larger effect of exercise training on
the RV. It has long been known that prolonged endurance
exercise such as a full-length triathlon (3.9 km swim, 180.2
km bicycle ride, and 42.2 km run) produces acute increases
in RV diameter measured by echocardiography, whereas
LV volume decreases (51). Recent studies have confirmed
these changes in RV diameter after endurance events, but
have also documented reductions in RV ejection fraction
(EF) without change in LV function (124). BNP and cTnI
increased with exercise, and the magnitude of the increase
correlated directly with the decrease in RV ejection fraction
(r � 0.52 and 0.49, P � 0.002 for both) (124). The reduc-
tion in RVEF also correlated directly with the race duration
and the athletes’ estimated maximal oxygen uptake, sug-
gesting that the time and absolute intensity of exertion af-
fect RV function. The presence of myocardial scarring in
these athletes was assessed using MRI and LGE. Five of 39
athletes had LGE. These five athletes had practiced sports
for an average of 20 � 16 versus only 8 � 6 yr in those
without LGE (P � 0.05). LGE in the athletes was located
where the RV attaches to the intraventricular septum.

An animal model (16), referred to as the marathon rat
(274), also suggests that exercise training preferentially pro-
duces worrisome changes in the RV. Rats forced to run on
a treadmill for 18 wk at high intensity, which the authors
equate to 10 yr of endurance training, developed collagen
deposits and biochemical markers of myocardial fibrosis in
the RV, but not in the LV (16). Furthermore, programmed
electrical stimulation, a technique designed to evaluate sus-
ceptibility to lethal arrhythmias, produced sustained ven-
tricular tachycardia, in 42% (5 of 12) of exercise-trained
animals but in only 6% (1 of 16) of sedentary controls (P �
0.05).

In sum, these articles suggest that prolonged exercise train-
ing facilitates the development of ARVC in susceptible in-
dividuals. Studies of prolonged exercise and lifelong endur-
ance athletes suggest that prolonged exercise training may
even create scarring, fibrosis, and myocardial injury in in-
dividuals without a genetic predisposition to RV cardiomy-
opathy (124).

VII. LONGEVITY

It is well established that moderate-intensity exercise re-
duces the risk of CVD mortality and morbidity (282). Vig-
orous exercise, however, can transiently increase the risk of

sudden cardiac death (263). The impact of chronic endur-
ance exercise on the longevity of elite athletes is controver-
sial. Early studies in university rowers report a 15% reduc-
tion in mortality compared with the general population (85)
and a 6-yr increase in life expectancy compared with non-
athletic classmates (195). However, others reported re-
duced mortality rates below the age of 50 but not later in life
(223), or no difference in longevity among athletic and non-
athletic university students (205).

More recent studies largely support a beneficial effect of
vigorous exercise on longevity. A large American study,
including 13,016 runners and 42,121 controls, demon-
strated that that leisure-time running reduced all-cause
mortality rates by 30% [hazard ratio (HR) � 0.70, 95% CI
� 0.64–0.77] and cardiovascular mortality by 45% (HR �
0.55, 95% CI � 0.46–0.65) (130). Persistent running fur-
ther improved the health benefits of exercise. Interestingly,
mortality rates were largely independent of weekly running
distance, frequency, speed, and number of MET-min (130).
These findings are in contrast with the Copenhagen City
Heart Study (225). Although the authors reported a 6-yr
increased life expectancy in joggers (n � 1,129) versus non-
joggers (n � 16,423), the results suggested a U-shaped re-
lationship between jogging time and mortality (225).
Whereas jogging 60–150 min/wk significantly reduced
mortality (HR � 0.58, 95% CI � 0.41–0.82), jogging 150–
240 min/wk or �240 min/wk did not (HR � 0.79, 95%
CI � 0.52–1.19 and HR � 0.86, 95% CI � 0.59, 1.24,
respectively) (225). There were only 166 joggers in the high-
est jogging group, however.

Several studies assessed longevity in elite athletes. Finish
champion skiers (n � 396) demonstrated 2.8–4.3 yr of
increased life expectancy compared with a comparison
group of Finnish men (106). Two other Finnish studies
found 5–6 yr of increased life expectancy in world-class
endurance athletes (n � 303 and n � 437) compared with a
military reference cohort (n � 1,712) (108, 214). A reduc-
tion of the risks for cardiovascular mortality (OR � 0.49,
95% CI � 0.26–0.93) and cancer (OR � 0.36, 95% CI �
0.12–0.92) were the major contributors to the increased
survival rates in the athletic population (108, 214). These
findings were recently confirmed by a meta-analysis includ-
ing data from 42,807 elite athletes (71). Athletes reported a
33% reduced risk for all-cause mortality [standardized
mortality rate (SMR) � 0.67, 95% CI � 0.55–0.81]. Both
cardiovascular (SMR � 0.73, 95% CI � 0.65–0.82) and
cancer (SMR � 0.60, 95% CI � 0.38–0.94) mortality rates
were significantly lower in athletes versus controls (71).
Similarly, a large Swedish study (n � 73,622) reported a
52% decrease in overall mortality (SMR � 0.48, 95% CI �
0.44–0.53) and a 57% decrease in cardiovascular mortality
(SMR � 0.43, 95% CI � 0.35–0.51) among participants of
the Vasaloppet cross-country ski race (63). Health benefits
were stronger in older skiers and those that participated in
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multiple races (63). A study including 15,174 Olympic ath-
letes who won medals between 1896 and 2010 reported 2.8
yr of increased life expectancy compared with matched co-
horts in the general population (32). Finally, French elite
cyclists competing in the Tour de France (n � 786) experi-
enced a 41% lower all-cause mortality (SMR � 0.59, 95%
CI � 0.42–0.72) and a 33% lower cardiovascular mortality
(SMR � 0.67, 95% CI � 0.50–0.88) compared with males
from the general population (143).

Consequently, there is in general strong evidence that vig-
orous endurance exercise reduces all-cause and cardiovas-
cular mortality in amateur and elite athletes. Thus doses of
habitual exercise above the recommended physical activity
guidelines may improve health and stimulate longevity in
the long run. On the other hand, such studies cannot sepa-
rate the effects of exercise training from innate characteris-
tics that facilitated these individuals becoming athletes in
the first place. Also, lifestyle differences such as smoking,
diet, and socioeconomic status between athletes and control
cohorts may confound assessment of the benefits of lifelong
exercise training on longevity (120).

VIII. PERSPECTIVES AND CONCLUSIONS

Physically active individuals experience approximately half
the risk of ASCVD, and most studies suggest that the ben-
efits of physical activity increase progressively with increas-
ing activity. Few studies, however, have examined the ef-
fects of life-long extreme endurance exercise on cardiac risk
or the possibility that there may be deleterious cardiac ef-
fects of extreme exercise and prolonged exercise training
(FIGURE 9).

Some of the risk of exercise is well-known, since it is ac-
cepted that exercise and physical activity acutely, albeit
transiently, increase the risk for both AMI and SCD. This
risk is small for the general population and further reduced,
but still present, even in habitually active individuals.
Exercise also acutely increases serum biomarkers for car-
diovascular disease including CK-MB, cTn, and BNP. The
increase in CKMB appears to result from skeletal muscle
damage from exercise-trained skeletal muscle whose
CKMB content has increased with exercise training. The
source of the increases in cTn and BNP is less clear, but both
probably are emitted from cardiac muscle in response to the
physical stress of exercise. These increases are of some con-
cern because several studies have demonstrated that a pro-
longed bout of exercise reduces ventricular function, pri-
marily of the right ventricle, supporting the hypothesis that
prolonged exercise acutely injures cardiac muscle and pro-
duces “cardiac fatigue.” These reductions in cardiac func-
tion are transient, and probably of no physiologic conse-
quence, but there are several studies documenting myocar-
dial fibrosis in lifelong endurance athletes. It is not clear if
the increases in cardiac biomarkers, reductions in ventricu-

lar function, and cardiac fibrosis are interrelated. There is
also preliminary evidence that middle-aged endurance ath-
letes have increased coronary artery calcification scores, a
marker of atherosclerosis. This is surprising given the gen-
erally low levels of atherosclerotic risk factors in the run-
ners. The significance of this calcification is unknown espe-
cially given the overwhelming evidence that physical activ-
ity is related to lower ASCVD risk, but it is possible that the
increases in heart rate and SBP produced by exercise alter
coronary artery flow dynamics and ultimately accelerate
atherosclerosis.

Exercise training produces profound changes in cardiac
physiology and structure collectively referred to as the “ath-
lete’s heart.” There are increases in cardiac parasympa-
thetic or vagal tone and reductions in sympathetic tone
producing the well-recognized reductions in resting heart
rate. There is also enlargement of all four cardiac chambers.
These adaptations that facilitate exercise performance may
have adverse cardiac effects. Atrial fibrillation appears to be
more common in older athletes possibly because of in-
creased vagal tone and left atrial size. The RV increases in
size with exercise training and appears to be more vulnera-
ble to the acute effects of exercise possibly because the in-
crease in pulmonary artery systolic blood pressure with ex-
ercise and therefore RV wall stress is relatively greater in the
right than left sides of the heart. Remarkably, physically

Can lifelong endurance exercise hurt the heart? 

Acute cardiovascular risks 
risk for sudden cardiac death 
risk for acute myocardial infarction 
ventricular function of the heart 

Evidence of acute myocardial injury 
CK and CK-MB concentrations 
cardiac troponin concentrations 
BNP and NT-proBNP concentrations 

Cardiac remodeling 
dimensions of right and left ventricle 
dimensions of right and left atria 
wall thickness 

Potential cardiac maladaptations 
= / Carotid intima media thickening 

Coronary artery calcification 
prevalence of myocardial fibrosis 
risk for atrial fibrillation 
risk for bradycardia 
aortic diameter 
progression of ARVC 

Longevity 
life expectancy 
risk for cardiovascular mortality 

FIGURE 9. An overview of potential deleterious cardiac effects of
the performance of acute and chronic endurance exercise.
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active individuals with genetic defects in the desmosomal
proteins known to cause RVCM/D have an earlier and more
severe presentation of the disease than their sedentary coun-
terparts who also have the genetic defects. This strongly
suggests that exercise can hasten cardiac disease in suscep-
tible individuals. One can speculate that exercise and phys-
ical activity could similarly hasten phenotypic expression of
other inherited cardiac conditions such as LQTS, HCM,
genetic defects of aortic tissue, and other diseases.

This review does not intend to defame exercise, but to
praise it. Exercise and physical activity appear to have re-
markably beneficial effects for the majority of the popula-
tion. The problem for most developed societies is too little
and not too much exercise. Nevertheless, the possibility that
prodigious amounts of exercise could adversely affect car-
diac function and disease risk in some individuals or popu-
lations should be scientifically considered and examined.
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