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Exercise is the Real Polypill

The concept of a “polypill” is receiving growing attention to prevent cardio-

vascular disease. Yet similar if not overall higher benefits are achievable with

regular exercise, a drug-free intervention for which our genome has been

haped over evolution. Compared with drugs, exercise is available at low cost

and relatively free of adverse effects. We summarize epidemiological evi-

dence on the preventive/therapeutic benefits of exercise and on the main

biological mediators involved.
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An Evolutionary Perspective

Despite recent strong selection pressure (495), our
genetic makeup is largely shaped to support the
physical activity (PA) patterns of hunter-gatherer
societies living in the Paleolithic era, for which
food/fluid procurement (and thus survival) was
obligatorily linked to PA (71, 347). The energy ex-
penditure of hunter-gatherers during PA (�1,000 –
1,500 kcal/day) can be reached with 3– 4 h/day of
moderate-to-vigorous PA (MVPA), e.g., brisk/very
brisk walking (71, 346). Yet technological improve-
ments over just �350 generations (agricultural fol-
lowed by industrial and, most recently, digital
revolution) have led to dramatic reductions in hu-
man PA levels (26, 475): �1/3 of adults worldwide
are currently inactive, and the endemic inactivity
trend starts in early life (166).

Physical inactivity in contemporary obesogenic
environments initiates maladaptations that cause
chronic disease and is becoming a major public
health problem (36). In contrast, regular PA has a
profound effect on the expression of a substantial
proportion of our genome (474), which has been
selected for optimizing aerobic metabolism to con-
serve energy in an environment of food scarcity
(40, 41), resulting in numerous beneficial adapta-
tions and decreased risk of chronic diseases, as
discussed below.

Epidemiological Evidence I:
Exercise Benefits–How Protective is
Exercise per se Against
Conventional Cardiovascular Risk
Factors Compared With Drugs?

The main outcome of regular PA1, achieving mod-
erate-to-high peak cardiorespiratory fitness (�8

METs2), reduces the risk of cardiovascular events
and all-cause mortality (234). There is strong epi-
demiological evidence indicating that regular PA is
associated with reduced rates of all-cause mortal-
ity, cardiovascular disease (CVD), hypertension,
stroke, metabolic syndrome, Type 2 diabetes,
breast and colon cancer, depression, and falling
(see Ref. 255 for a review). Especially provocative
are recent findings showing a positive and negative
association between leisure time spent sitting or
doing PA, respectively, and mortality risk among
survivors of colorectal cancer (55). Furthermore,
the benefits of PA are such that a dose response is
usually observed in the general population. Higher
MVPA levels [�450 min/wk, clearly above the min-
imum international recommendations of 150
min/wk of MVPA (515)] are associated with longer
life expectancy (317). And athletes, who are those
humans sustaining the highest possible PA levels,
live longer than their nonathletic counterparts
(415). Most epidemiological research up to date
has focused on exercise and CVD risk factors or
cardiovascular outcomes. For instance, the bene-
fits of regular exercise on all-cause mortality and
CVD are well above those of a nutritional interven-
tion, supplementation with marine-derived omega-3
polyunsaturated fatty acids (PUFAs), which has
gained considerable popularity owing to the po-
tential ability of omega-3 PUFAs to lower triglycer-
ide levels, prevent serious arrhythmias, or decrease
platelet aggregation and blood pressure (BP) (423).
These protective roles of omega-3 PUFAs are, however,
controversial since a recent meta-analysis showed that
omega-3 PUFAs are not significantly associated
with decreased risk of all-cause mortality and ma-
jor CVD outcomes (405).

Exercise training has a restoring/improving ef-
fect on endothelial function (103, 158, 500). This is
an important consideration because endothelial
dysfunction is a risk factor for CVD, whereas normal
or enhanced endothelial function has a protective

1The terms “PA” (physical activity) and “exercise” are
used interchangeably in this review to make reading
more fluent.

21 MET equals an oxygen consumption of 3.5 ml·kg�1·
min�1.
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effect (158 –160). In previously sedentary middle-
aged and older healthy men, regular aerobic exer-
cise can prevent the age-associated loss in
endothelium-dependent vasodilation (as assessed
by vasodilatory response to acetylcholine) and re-
store this variable to levels similar to those of
young adults (103). Exercise also reduces more
“traditional” CVD risk factors, albeit probably its
effects are modest compared with the impact of
medications, with the possible exception of (pre-)
diabetes. This is illustrated in the paragraphs be-
low, where we compare the effects of exercise in-
terventions alone to those of common drugs on
conventional CVD risk factors. There is scant bio-
medical literature containing direct comparison of
exercise to pharmacological intervention. There-
fore, the comparisons presented herein are based
on the results of recent meta-analyses (indepen-
dently searched by two authors, C. Fiuza-Luces
and N. Garatachea) of 1) randomized controlled
trials (RCTs) of drugs or drug combinations and
2) RCTs of exercise training alone.

Exercise vs. Drugs: Glucose Intolerance

A recent meta-analysis has reported that exercise
training is associated with an overall 0.67% decline
in glycosylated hemoglobin (HbA1c) levels [95%
confidence intervals (CI), �0.84 to �0.49] (479).
Separate analyses showed that each of aerobic
(�0.73%; 95% CI, �1.06 to �0.40), resistance
(�0.57%; 95% CI, �1.14 to �0.01), or combined
aerobic and resistance training modes were asso-
ciated with declines in HbA1c levels compared
with control participants (�0.51%; 95% CI, �0.79
to �0.23). The overall reduction in HbA1c of
�0.67% brought about by exercise compares rela-
tively well with the recently reported reductions
achieved by commonly used oral antidiabetic
medications such as metformin monotheraphy
and dipeptidyl peptidase inhibitors (sitagliptin,
saxagliptin, vildagliptin, linagliptin), which can
lower HbA1c levels by 1.12% (95% CI, �0.92 to
�1.32) (182) and 0.76% (95% CI, �0.83 to �0.68),
respectively (362). On the other hand, a recent
meta-analysis has shown that non-drug approaches
(diet, exercise) are superior to drug interventions
in diabetes prevention [risk ratio of 0.52 (95% CI,
0.46 – 0.58) vs. 0.70 (95% CI, 0.58 – 0.85), respec-
tively (P � 0.05)] (191).

Exercise vs. Drugs: Blood Lipids

A recent meta-analysis of RTCs (223) has shown a
significant decrease in triglycerides after exercise
interventions (�6.0 mg/dl; 95% CI, �11.8 to �0.2)
but not in total cholesterol (0.9 mg/dl; 95% CI,
�3.2 to 5.0), high-density lipoprotein (HDL) cho-
lesterol (1.0 mg/dl; 95% CI, �0.2 to 2.1), or low-
density lipoprotein (LDL) cholesterol (2.1 mg/dl;

95% CI, �1.5 to 5.7). Relative to baseline values,
changes were equivalent to 0.4%, 2.1%, 1.5%, and
�5.7% for total cholesterol, HDL cholesterol, LDL
cholesterol, and triglycerides, respectively. Statins,
especially simvastatin and atorvastatin, are the
most widely prescribed cholesterol-lowering drugs
(113). A meta-analysis of 21 trials testing statin
regimens reported a weighted mean difference af-
ter 1 year of treatment of 1.07 mM (�29%) for LDL
cholesterol (18). A more recent meta-analysis of
the effects of atorvastatin on blood lipids showed
decreases of 36 –53% for LDL cholesterol (2).

Exercise vs. Drugs: Blood Pressure

A recent meta-analysis reported BP reductions
with aerobic exercise in healthy subjects [�2.4
mmHg (95% CI, �4.2 to �0.6) for systolic BP (SBP)
and �1.6 mmHg (95% CI, �2.4 to 0.74) for diastolic
BP (DBP)] and in hypertensive people [�6.9 mmHg
(95% CI, �9.1 to �4.6) for SBP and �4.9 mmHg
(95% CI, �6.5 to �3.3)] for DBP (73). Resistance
training, including either dynamic (72, 74, 222) or
static exercises (74, 221, 358), also has a BP-lower-
ing effect in people with normal pressure or pre-
hypertension, overall, �3.87 mmHg (95% CI, �6.19
to �1.54) for SBP and �3.6 mmHg (95% CI, �5.0 to
�2.1) for DBP. Of note, it is difficult to compare the
effects of exercise and drugs since we are not aware
of a meta-analysis comparing the effects of BP-
lowering drugs vs. no drug administration. Never-
theless, the effects of exercise on BP are probably
of higher magnitude than those obtained with any
single BP-lowering drug, e.g., aliskiren, a renin in-
hibitor that induces an overall BP reduction of
�0.18 mmHg (95% CI, �1.07 to 0.71) or angioten-
sin receptor blockers, which induce an overall BP
reduction of �0.15 mmHg (95% CI, �1.38 to 1.69)
(138). Exercise effects on BP are, however, likely to
be similar or slightly lower than those of drug com-
binations, as suggested by the fact that drug com-
binations are substantially more efficacious than
monotherapy in lowering BP. For instance, al-
iskiren combined with angiotensin receptor block-
ers would be superior to aliskiren monotherapy at
the maximum recommended dose on SBP (�4.80
mmHg; 95% CI, �6.22 to �3.39) and DBP reduc-
tion (�2.96 mmHg; 95% CI, �4.63 to �1.28). Sim-
ilar results can be found for aliskiren combined
with angiotensin receptor blockers vs. angiotensin
receptor blockers monotherapy (SBP: �4.43 mmHg,
95% CI: �5.91 to �2.96; DBP: �2.40 mmHg, 95% CI:
�3.41 to �1.39) (531).

Exercise vs. Drugs: Thrombosis

Longitudinal studies have shown that increased
levels of PA reduce thrombosis-related cardiovas-
cular events, e.g., nonfatal myocardial infarctions,
strokes, and mortality, in people with (252, 376,
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504) or without a history of CVD (279, 330, 496). A
recent meta-analysis has concluded that moderate
exercise training after successful coronary stenting,
compared with control group, does not signifi-
cantly change the incidence of stent thrombosis
and major adverse cardiovascular events (death,
myocardial infarction, stroke) for up to 3 years
(1.8% vs. 2.0%, P � 0.73; and 14.9% vs. 15.0%, P �

0.97, respectively) but is effective in reducing un-
scheduled hospital visits for worsening angina
(20.2% vs. 27.2%, P � 0.0001) (451). Comparisons
with drugs are also difficult here, but pharmaco-
logical interventions would seem to outweigh ex-
ercise benefits. For instance, in a meta-analysis
with 5,821 patients undergoing coronary stenting,
the use of cilostazol-based triple antiplatelet ther-
apy (TAT) was associated with a significant reduc-
tion in the risk of major adverse cardiovascular
events compared with dual antiplatelet therapy
(DAT) (9.2% vs. 13.4%; odds ratio of 0.59; 95% CI,
0.46 to 0.76) (142).

Thus, although regular exercise and cardiorespi-
ratory fitness are associated with a significant re-
duction in cardiac events (165, 329, 442), it seems
that the benefits of regular exercise go beyond
reducing traditional CVD risk factors. This is con-
sistent with classic (see Ref. 213 for a review) and
recent reports showing that high cardiorespiratory
fitness can reduce morbidity and mortality inde-
pendent of standard CVD risk factors (254, 354,
445). Notably, Mora et al. evaluated 27,055 appar-
ently healthy women and found that �59% of the
risk reduction for all forms of CVD associated with
higher levels of PA could be attributed to the effects
of exercise on known risk factors, with inflamma-
tory/hemostatic biomarkers (e.g., C-reactive pro-
tein, fibrinogen) making the largest contribution to
PA reduction of CVD, followed by BP, lipids, and
body mass index (319). So, where is the “risk factor
gap” explaining the remaining variance (�40%) in
CVD risk reduction achieved by regular exercise?

Epidemiological Evidence II:
Exercise Attenuates Aging
Autonomic Dysfunction

Besides improving endothelial function (see above),
regular exercise contributes to attenuate aging au-
tonomic dysfunction; thus autonomic dysfunction
could be one of the missing or nonconventional
risk factors that is altered by exercise, as elegantly
hypothesized by Joyner and Green in a recent re-
view (213) and summarized below.

Aging is associated with marked increases in
sympathetic nervous system (SNS) activity to sev-
eral peripheral tissues, possibly to stimulate ther-
mogenesis to prevent increasing adiposity (436).
This tonic activation of the peripheral SNS has,

however, deleterious consequences on the struc-
ture and function of the cardiovascular system,
e.g., chronically reduced leg blood flow, increased
arterial BP, impaired baroreflex function, or hyper-
trophy of large arteries, which in turn can increase
CVD risk (436). Chronically augmented SNS-
mediated reductions in peripheral blood flow and
vascular conductance can also contribute to the
etiology of the metabolic syndrome, by increasing
glucose intolerance and insulin resistance (23,
270). Heart rate variability (HRV) is a noninvasive
measure of the autonomic nervous system func-
tion and a surrogate index for clinical outcome in
trials of CVD prevention (344), with high values
reflecting a survival advantage, whereas reduced
HRV is a marker of autonomic dysfunction that
may be associated with poorer cardiovascular
health and outcomes (412), including also a sub-
stantial increase in the incidence of coronary heart
disease, myocardial infarction, fatal coronary dis-
ease, and total mortality in diabetic individuals
(269). A recent study has shown that a simpler
marker of SNS, elevated resting heart rate, is a risk
factor for mortality (16% risk increase per 10 beats/
min) independent of conventional CVD risk factors
(208). Furthermore, high levels of sympathetic out-
flow in conjunction with endothelial dysfunction
may have a synergistic and detrimental effect in
terms of CVD risk (89). On the other hand, there is
evidence that exercise training can keep the auto-
nomic nervous system healthy, including in old
people.

Moderate aerobic exercise (brisk walking) for 3
mo attenuates age-related reductions in baroreflex
function, and there appears to be an exercise
“dose-response” with regard to the exercise bene-
fits, with endurance-trained older individuals
showing similar baroreflex function than their
moderately active younger peers (316). A recent
meta-analysis has shown that HRV increases with
exercise training (344), with this effect being re-
ported in middle-aged or old people who are either
healthy (106, 134, 374) or have myocardial infarc-
tion (51, 65, 108, 245, 262, 288, 289, 295, 359, 421),
chronic heart failure (227, 288, 375, 440), translu-
minal coronary angioplasty, coronary artery by-
pass grafting (197, 281, 464, 477), or diabetes (123,
277, 535). Although angiotensin II and nitric oxide
(NO·) may play a mediating role and more research
is needed, to date, it seems that exercise may in-
fluence HRV in humans via increasing vagal mod-
ulation and decreasing sympathetic tone (412).

Autonomic dysfunction can also contribute sig-
nificantly to the risk for sudden death due to ven-
tricular fibrillation, which is the leading cause of
death in most industrially developed countries
(33). Alterations in cardiac parasympathetic control are
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indeed associated with an increased risk for sud-
den death (34, 56, 90, 413), and there is a particu-
larly strong association between reductions in HRV
or baroreceptor reflex sensitivity and increased in-
cidence of sudden cardiac death in patients recov-
ering from myocardial infarction (14, 31, 112, 187,
244, 246, 466). This provides evidence supporting the
probability that myocardial infarction reduces cardiac
parasympathetic regulation and enhances �2-adreno-
ceptor expression sensitivity, leading to intracellular
calcium dysregulation and arrhythmias (33). Thus not
only �-adrenoceptor antagonists but also aerobic exer-
cise interventions, which favorably improve cardiac au-
tonomic balance by increasing parasympathetic or
decreasing sympathetic activity (114, 290, 353, 370,
450), could reduce the incidence of lethal ventricular
arrhythmias (32, 33). Evidence from canine models in-
dicates that exercise training improves cardiac para-
sympathetic regulation (as reflected by increased HRV),
restores a more normal �-adrenoceptor balance (i.e.,
reducing �2-adrenoceptor sensitivity and expression),
and protects against ventricular fibrillation induced by
acute myocardial ischemia (see Ref. 33 for a review).

Epidemiological Evidence III in the
Context of the 21st Century’s
Medicine: Exercise Has
“Polypill-Like” Effects

Paradoxically, the pandemic spread of cardio-met-
abolic diseases has paralleled the ground-breaking
advances in pharmacology, and CVD remains the
leading cause of death worldwide (307). Further
complicating the problem, therapeutic strategies
designed to control several CVD risk factors simul-
taneously in people without evidence of CVD are
expensive and difficult to implement. The develop-
ment of fixed-dose drug combinations originally
designed for the treatment of myocardial infarc-
tion such as statins, diuretics, �-blockers, angio-
tensin-converting enzyme (ACE) inhibitors, or
aspirin in one pill could help to potentially over-
come these limitations and is gaining attention as
a promising preventive strategy in the 21st century
(335, 422).

Wald and Law first described a combination pill
for CVD prevention (498), which they called a
“polypill” (499). In 2001, a World Health Organiza-
tion and Wellcome Trust meeting of experts con-
cluded that a fixed-dose polypill containing aspirin,
statin, and two BP-lowering agents may improve
adherence to treatment as well as substantially
reduce the cost of the drugs, particularly for low-
and middle-income countries (516). And, in 2003,
Wald and Law claimed that CVD could be reduced by
88% and strokes by 80% if all those over 55 years of
age were given a polypill containing three low-dose
BP-lowering medications: a statin, low-dose aspirin,

and folic acid (499). This controversial and provoc-
ative approach of “medicalizing” the population
has been followed by more targeted approaches.
For instance, a large clinical trial is being con-
ducted in five countries to investigate the effects of
a polypill (aspirin, an ACE inhibitor, and a statin)
on ischemic heart disease recurrence (137). Yet
polypill-like benefits are achievable with a drug-
free intervention, regular PA.

Elley et al. recently conducted a meta-analysis
(the only one we are aware of) on both the efficacy
and tolerability of polypills (115). They reviewed
data on six RCTs, including a total of 2,218 subjects
(1,116 in a polypill group and 1,102 in a compari-
son group) who were mostly middle-aged adults
(men/women, 50 – 60 yr) with no previous CVD but
with �1 risk factors. The polypill consisted of one
to three antihypertensive drugs (calcium channel
blocker, thiazide, ACE inhibitor or angiotensin re-
ceptor blocker, or combinations of the above) and
one lipid-lowering medication (atorvastatin or
simvastatin) with or without aspirin for primary
CVD prevention, and treatment lasted 6 –56 wk. In
FIGURE 1, we compare the results of the above-
mentioned meta-analysis on important outcomes
related to CVD risk factors (BP, total and LDL cho-
lesterol), with those reported in two recent meta-
analyses of the effects of regular exercise in
middle-aged adults: a study by Pattyn et al. in 272
middle-aged men/women with the metabolic syn-
drome but with no other CVD (median age 52 yr,
82 sedentary controls, and 190 individuals exercis-
ing during 8 –52 wk) (364) and a report by Corne-
lissen and Smart in 5,223 middle-aged men/
women without CVD (1,822 controls and 3,401
people who were exercise training for 4 –52 wk)
(75). Comparable and in fact slightly higher bene-
fits on total and LDL cholesterol can be obtained
with endurance exercise compared with polypills.
Whereas isometric exercise and polypills have an
overall similar BP-lowering effect, as FIGURE 1
shows, the other exercise modes have a more
modest effect. Of note, additional and important
health benefits of exercise interventions that are
unlikely to be achieved by polypills are signifi-
cant decreases and increases in adiposity and
cardiorespiratory fitness, respectively (364). Rates of
tolerability/adherence to the intervention also
seem to favor exercise interventions, with an aver-
age drop out from the exercise programs of 10%
(364), whereas those taking polypills are more
likely to discontinue medication compared with
placebo or one drug component (20% vs. 14%)
(115).

Despite provocative reports in the literature, e.g.,
orally active drugs such as the AMPK-activator 5-
amino-1-�-D-ribofuranosyl-imidazole-4-carboxamide
(AICAR) can increase endurance without exercise
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training (331), it would be unrealistic to think that
the multi-systemic benefits of regular PA can be
replaced by ingesting daily an “exercise-like”
polypill (95, 155). Nonetheless, identification of the
bioactive molecules and biological mechanisms
that are candidates for mediating exercise benefits
through biological pathways that are largely dif-
ferent from those targeted by common drugs, is
of medical interest, since it might help to im-
prove our knowledge of the pathophysiology of
diseases of modern civilization as well as to max-
imize the efficacy of PA interventions by imple-
menting the best possible exercise dosage,
resulting in optimal circulating levels of “benefi-
cial” molecules.

Although describing in detail all the biological
mechanisms/mediators (including complex mo-
lecular-signaling pathways) that can potentially re-
spond and adapt to exercise stimuli is beyond our
scope, the intent of the subsequent part of this
review is to summarize the current body of knowl-
edge on the main biological mediators (ingredi-
ents) of the preventive/therapeutic effects of
regular PA against most prevalent chronic diseases,

cardiometabolic disorders, and cancer, and of its
anti-aging effects.

Skeletal-Muscle Manufactures the
Pill

Skeletal-muscle fibers can produce several hun-
dred secreted factors, including proteins, growth
factors, cytokines, and metallopeptidases (42,
178, 345, 407, 527), with such secretory capacity
increasing during muscle contractions (13, 94,
163, 190, 286, 357, 367), myogenesis (85, 87, 178),
and muscle remodeling (529), or after exercise
training (102, 345, 407). Muscle-derived molecules
exerting either paracrine or endocrine effects are
termed “myokines” (367) and are strong candi-
dates to make up a substantial fraction of the ex-
ercise polypill. Here, we focus on the main
myokines and their putative protective role against
disease phenotypes (see also FIGURE 2 and Table 1).

Myostatin, the first described secreted muscle
factor to fulfil the criteria of a myokine, is a potent
muscle-growth inhibitor (302) that acts via SMAD
signaling (398) or mammalian target-of-rapamycin

(mTOR) inhibition (12, 249, 271, 301, 403, 426,
476). Acute endurance (170, 278) or resistance
(228, 397) and chronic endurance exercise re-
duce myostatin expression (170, 184, 236, 237,
292). Although myostatin increases might con-
tribute to insulin resistance (184, 360), obesity
(185), muscle wasting (63, 70, 97, 154), or aging-
sarcopenia (523), its loss/inhibition decreases
adiposity (164, 303, 521, 530), induces browning
of the white adipose tissue [through AMPK-per-
oxisome proliferator-activated receptor-� coacti-
vator 1� (PGC-1�)-iriscin pathway] (443), and
ameliorates muscle weakness (29, 38, 241, 256,
272, 323, 328, 386, 448, 478, 497, 532).

IL-6 is probably the myokine prototype (366);
its release by working muscles explains the con-
sistently reported increase in blood IL-6 with
exercise (118, 183, 212, 220, 278, 369, 411, 457,
458). Muscle release of IL-6 increases with ex-
ercise intensity (356) and duration (125), with
muscle-mass recruitment (368), and when mus-
cle glycogen stores are low (220, 456), but de-
creases with muscle damage (285, 509) or with
carbohydrate ingestion (179, 248, 265–267, 339 –
341). Endogenous nitric oxide (NO·), interaction
between Ca2	/nuclear factor of activated T-cell
(NFAT), and glycogen/p38 MAPK pathways are
putative upstream signals leading to muscle-
IL-6 secretion (368). More controversial are the
effects of chronic exercise on muscle-derived
IL-6 (81, 126), yet a training increase in the
sensitivity of its receptor IL-6R� has been re-
ported (219). This myokine exerts its action lo-
cally (within muscles) or peripherally (in a

FIGURE 1. Comparison on the effects of the polypill vs. exercise interventions
on outcomes related to CVD risk using data from meta-analyses (see text for
more details)
Data of mean change in the outcomes are expressed in mean and 95% confidence intervals.
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hormone-like fashion) to mediate, among others,
important metabolic and anti-inflammatory/im-
mune modulatory effects. IL-6 has “leptin-like” ac-
tions: through AMPK activation in both skeletal-
muscle and adipose tissue (6, 61, 145, 224), it
increases glucose uptake (126) and intra-muscle
(50, 61, 373) or whole-body (486) lipid oxidation
(61, 214). Systemic low-level inflammation is a car-
dinal feature of aging, cardio-metabolic diseases,
and some types of cancer that can be attenuated by
the cumulative effect of regular exercise bouts,
during which the muscle can release myokines
such as IL-6; this creates a healthy milieu by in-
ducing the production of the anti-inflammatory
cytokines
IL-1Ra, IL-10, or sTNF-R, and inhibiting the pro-
inflammatory cytokine TNF-� (122, 294, 312, 355,
356). Other potential roles of IL-6 are stimulation
of muscle growth (7, 441) and angiogenesis (172).

Another prototype of contraction-induced myo-
kine is IL-15, with resistance exercise stimulating
its secretion (338, 402). In addition to its local
anabolic/anti-catabolic effects (59, 60, 135, 338,
390, 391), IL-15 plays an anti-obesogenic effect
(337, 388), mainly by inhibiting lipid deposition
(8 –10, 24, 59, 136, 389). Thus muscle-derived IL-15
is advocated as one of the mediators of the anti-
obesity effects of exercise (520). Although leukemia
inhibitory factor (LIF) can be released by many
tissues and have multiple effects, the functional
role of contraction-induced LIF (e.g., after resis-
tance exercise) would be restricted to skeletal muscles,
where it stimulates hypertrophy/regeneration, mainly
through satellite cell proliferation (47– 49, 161, 216,
217, 243, 418, 452, 453, 506). Contraction-induced
myokines IL-7 (174) and IL-8 (86, 278, 341) also work
mainly at the local level, where they modulate muscle
development (174) or promote angiogenesis through

FIGURE 2. Summary of the main myokines, their putative effects, and the molecular signals/pathways involved
AMPK, AMP-activated protein kinase; BDNF, brain-derived neurotrophic factor; CREB, cAMP response-element-binding protein; C-X-C R2, C-X-C
receptor 2; FFA, free-fatty acid; FGF21, fibroblast growth factor 21; Fndc5, fibronectin type III domain-containing 5 protein; Fstl1, follistatin-like 1;
IGF, insulin-like growth factor; IL-1ra, IL-1 receptor antagonist; Insl6, insulin-like 6; LIF, leukemia inhibitory factor; NO·, nitric oxide; NOS, nitric
oxide synthase; PGC-1�, peroxisome proliferator-activated receptor-� coactivator 1�; PI3K, phosphatidylinositol 3-kinase; SIRT1, sirtuin 1; SPARC,
secreted protein acidic and rich in cysteine; sTNF-R, soluble TNF receptors; trkB, tropomyosin receptor kinase; UCP1, uncoupling protein 1.
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C-X-C receptor 2 receptor signaling (131). IL-4 and
IL-13, which share a substantial fraction of their
sequence structure and biological roles, are up-
regulated by resistance training (385), with IL-4
mediating NFATc2-induced muscle growth (192)
and myotube maturation (247) and IL-3 stimulat-
ing additional recruitment of reserve cells during
IGF-I-induced hypertrophy (204).

Among all neurotrophins (molecules that stimu-
late neuronal survival, differentiation, or growth),
brain-derived neurotrophic factor (BDNF) is the
most affected by exercise (231). Circulating BDNF
increases with aerobic exercise (121, 147, 409, 437,
465, 510), especially with high-intensity exercise
(121, 431, 510), and rapidly decreases to basal lev-
els shortly after exertion (431), suggesting its clear-
ance is mediated by target-tissue uptake (284). Less
clear is its response to acute resistance exercise
(76, 146, 429) or resistance exercise training (66,
146, 263, 429, 435, 437, 524, 534). Several tissues,
such as contracting muscles (111, 152, 293) or
platelets (465), can express BDNF. Yet the main
origin of exercise-induced blood BDNF is likely the
brain before this molecule crosses the blood-brain
barrier (284). Increased BDNF transcripts in exer-
cised rodents’ brains are well documented, provid-
ing mechanistic support for a beneficial exercise
effect in cognitive function (4, 5, 30, 153, 193, 275,
315, 333, 334, 352, 396, 417, 425, 460, 488, 507), e.g.,
through the downstream signals tropomyosin re-
ceptor kinase (trkB), cAMP response-element-
binding protein (CREB), or synapsin I (488).
Exercise-induced BDNF in rodents is also likely to
contribute to the anticancer effect of PA (57).
Muscle-produced BDNF could act locally, enhanc-
ing muscle lipid oxidation via AMPK-activation
(293), whereas exercise-induced BDNF coming
from different sources might improve depression
(526) or anxiety symptoms through MAPK signal-
ing pathways (110), maintain brain function and
promote neuroplasticity (78, 153), or enhance the
efficacy of antidepressant treatment (416). BDNF
can also help maintain/repair motoneurons (327)
like other muscle-derived neurotrophins such as
neurotrophin 4 (133, 162) or could regulate satel-
lite-cell function/regeneration (69, 326).

Secreted protein acidic and rich in cysteine
(SPARC), is a matricellular protein that regulates
cell proliferation/migration and is implicated in
numerous biological processes (45). It was recently
identified as a myokine (13, 345) whose expression
increases with resistance training (345). SPARC,
which is in fact a potential target in cancer immu-
notherapy (198), might mediate the preventive ef-
fects of exercise on colon cancer by suppressing
the formation of aberrant crypt foci, probably
through stimulation of apoptosis via caspase-3
and -8 (13). Circulating (117, 318, 324, 365) and

muscle-transcript levels of S100A8-S100A9 com-
plex (calprotectin) increase with acute endurance
exercise (324). Potential beneficial effects (yet to be
demonstrated) of muscle-derived calprotectin might
also be cancer protection for its ability to induce
apoptosis in certain tumor lines (528), including
colon cancer lines (143), or to inhibit matrix met-
alloproteinases associated with cancer invasion
and metastasis (200).

Although there is controversy (473), recent re-
search has identified a novel PGC-1�-induced
myokine called iriscin (43). In white adipocytes,
iriscin induces expression of uncoupling protein 1
and other brown adipose tissue-associated genes
[partly via increased peroxisome proliferator-
activated receptor � (PPAR-�)] and thus increases
thermogenesis and switching of these cells toward
a brown, fat-like phenotype (43). These provoca-
tive findings have led to the postulation that iriscin
may be a therapeutic agent against cardiometa-
bolic disorders and a major component of the ex-
ercise polypill (420). Iriscin is linked with improved
aerobic fitness in cardiac patients (253), muscle
mass, and metabolic factors in healthy people
(195), and neurogenesis in animal models (171).

IGF-phosphatidylinositol 3-kinase (PI3K)-Akt signal-
ing plays a central role in muscle regeneration (88,
372), inducing myokines with an essentially local
action: insulin-like 6, which activates satellite cell
activation (529); follistatin-like 1, which promotes
endothelial function and revascularization in re-
sponse to ischemic insult through endothelial NO·

synthase (eNOS) signaling (357); and VEGF, which
stimulates angiogenesis (463). The Akt pathway
also upregulates muscle fibroblast growth factor 21
(FGF21) (201), an insulin-regulated myokine (188)
that is released to the blood during exercise (84),
although there exists controversy on the effects of
regular exercise in its basal levels (83, 287, 522). By
inhibiting lipolysis in adipocytes, exercise-released
FGF21 could play a protective role against lipotox-
icity, i.e., ectopic deposition of lipids in the liver or
muscle (84).

Other myokines and their putative roles (await-
ing more human research) include myonectin, a
metabolic regulator that stimulates uptake of free-
fatty acids in liver and adipocytes (439); musclin
(343, 525), an inhibitor of muscle-glucose uptake
(274); and visfatin (503), a NAD	 biosynthetic en-
zyme whose expression and circulating levels in-
crease (77) and decrease, respectively, with exercise
training (93). By virtue of its activating effect on
NAD	-dependent sirtuin 1 (SIRT1), visfatin
might mediate major exercise-induced health/
anti-aging effects involving SIRT1-pathways
(235): anti-oxidant defense, macromolecular
damage repair, or mitochondriogenesis. Of note,
visfatin is also an adipokine with rather different
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functions, i.e., pro-inflammatory (410) and anti-
apoptotic effects (91, 268).

Exercise and Regenerative
Medicine

Pluripotent stem cells (SCs) able to differentiate
into many cell types are proposed as a valuable
therapeutic source, notably in ischemic tissues
with low self-repair capacity. Because using em-
bryonic SCs has ethical and immune-related limi-
tations (401), researchers have explored other
means of obtaining SCs, e.g., isolating them from
extracorporeal sources (placenta, umbilical cord)
or reprogramming of mature cells. Yet another
strategy is stimulating adult SC proliferation and
migration from their home tissue (e.g., bone mar-
row) to target damaged tissue for subsequent en-
graftment and cell regeneration by applying
specific physiological stimuli, of which exercise is a
good example (284) (FIGURE 3).

Together with macrophage-mediated reverse
cholesterol transport3 the capacity for vessel wall
regeneration and angiogenesis is the main mech-
anism responsible for maintaining cardiovascular
health (321). The lower CVD risk associated with
regular exercise is largely mediated by an improve-
ment in such capacity (511). Endothelial regener-
ation and neovascularization not only depends on
cells residing within the vessel wall but also on
circulating SCs coming from other sources, notably
the bone marrow. A specific SC subset, originally
identified as endothelial progenitor cells (15) or now
more broadly referred to as circulating angiogenic cells

3Although there is some recent controversy (305), reg-
ular exercise seems to stimulate macrophage-reverse
cholesterol transport RCT in vitro (351) and in vivo (408),
with exercise-triggered activation of peroxisome prolif-
erator-activated receptor gamma (abbreviated as PPAR�
or NR1C, according to the unified nomenclature system
for the nuclear receptor superfamily) within these cells
being advocated as a putative involved mechanism (52,
472).

FIGURE 3. Summary of the main types of stem cells associated with exercise, their main putative effects, and the molecular
signals/pathways involved
Ang, angiopoietin; CAC, circulating angiogenic cells; C-X-C R4, C-X-C motif receptor 4; GH, growth hormone; HGF, hepatocyte growth factor;
HIF-1�, hypoxia-inducible factor 1-�; JAK-2, janus kinease-2; mMSC, muscle-derived mesenchymal stem cells; SC, stem cell; SCF, stem cell
factor.
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(CAC), target the vascular endothelium, where they
can engraft and promote repair and angiogenesis
(82, 505). Low CAC counts/function is correlated
with risk of CVD (19) or diabetes complications
(308) and decreases with senescence (480, 508),
whereas high CAC (see below) represents a link
between regular exercise and decreased CVD risk
(250), with such exercise benefits starting early in
life (501). CAC increases could also provide mech-
anistic support for the training-induced improve-
ment in myocardial perfusion and lower disease
progression in CVD patients (167, 173, 336, 434);
they also could complement the exercise benefits
in endothelial NO· production and thus in vascular
tone regulation, with regular bouts of exercise-
increased laminar flow increasing the expression/
activation (through phosphorylation via Akt) of
eNOS while attenuating NO· degradation into re-
active oxygen species (ROS) or reactive nitrogen
species (RNS) (144).

Circulating CAC increase with acute exercise in
healthy individuals (39, 157, 313, 322, 485), people
at risk for CVD (399), and CVD patients (3), al-
though this effect is blunted with age (276, 471).
Intense exercise, especially if inducing transient
myocardial ischemia, seems the most potent stim-
ulus for CAC release and subsequent vasculogen-
esis in CVD patients (3). Acute exercise also
appears to reverse CAC dysfunction in CVD pa-
tients (483, 484). Regular exercise increases CAC
number (250, 282, 424) or function in people with
CVD (44, 141, 459, 484), metabolic syndrome (120),
peripheral artery disease (430), or obesity/over-
weight (68), and in the elderly (519). However, this
effect has not been corroborated in some healthy
cohorts (394, 471, 512), and data from animal stud-
ies showing actual CAC engraftment in injured
tissues (92) remains to be validated in humans.
Postulated biological mediators of exercise-
induced CAC proliferation and release to the
bloodstream are reduced CAC apoptosis (250), ox-
idative stress (511), thrombin (276), VEGF (3, 250),
stimulation of PI3K/Akt-dependent hypoxia-in-
duced factor-1� (92) or C-X-C motif receptor 4-ja-
nus kinase-2 signaling pathways (519), IL-6 (39),
pro-angiogenic factors (hepatocyte growth factor,
angiopoietin 1 and 2 or stem cell factor) (39),
endothelial-derived NO· (512) or maybe NO· pro-
duced locally in the bone marrow (511), and NO·/
oxidative stress interaction (314, 511). Increases in
NO· produced inside CAC might mediate the im-
provement in the function of these cells with exer-
cise (206).

Research on another type of SC, mesenchymal
stem cells (MSCs) (129), has grown fast in the last
decade (139). Regardless of their origin (mainly, but
not only, bone marrow and adipose tissue), they repre-
sent pluripotent progenitors of mesoderm- or even

non-mesoderm-derived tissues with a wide variety
of therapeutic potential (graft vs. host or Crohn’s
disease, wound healing or as vehicles of anticancer
genes) (139, 536). Intense exercise, whether induc-
ing (395) or not inducing eccentric muscle damage,
is a potent stimulus for MSC release to the blood-
stream (280, 432). Vigorous exertion also increases
the migratory capacity of MSCs, an effect poten-
tially mediated by the myokine IL-6 (432). Similar
to what occurs with CAC, intense exercise-inducing
transient ischemia can increase circulating MSCs
in CVD patients (280), which is a potentially
promising finding because, together with the few
cardiac-resident SCs, MSCs have the potential to
repair damaged myocardium (518). However, ac-
tual engraftment of migratory MSCs in damaged
tissue (muscle, myocardium) remains to be dem-
onstrated.

SCs can also reside within the perivascular niche
of a variety of tissues, directly repairing injury or
indirectly facilitating regeneration by excreting cy-
tokines/growth factors that can stimulate other
resident SCs (58, 304). This seems to be the case for
skeletal muscles, where not only satellite cells but
also a variety of resident MSCs (mMSCs) can repair
damage (16, 100, 325, 419, 482). Proliferation of
mMSCs is stimulated by the muscle protein �7
integrin or by eccentric exercise (482), and these
cells can secrete angiogenic factors (VEGF, gran-
ulocyte-macrophage colony-stimulating factor),
contributing to vessel remodeling in skeletal
muscles following eccentric damage (196).

Proliferation of neural SCs might also contribute
to improve brain regenerative capacity and cogni-
tive ability, with some rodent models showing
training increases in hippocampal (242, 514) or
periventricular progenitors (35). Current candidate
neutrophins mediating exercise-induced neuro-
genesis are above-mentioned BDNF (231, 533),
growth hormone (35), or VEGF (79, 116).

The ROS Paradox

As first reported 35 years ago (105), acute exercise
generates ROS (see Ref. 384 for a review) and does
so in an intensity- (209, 387, 428) and duration-
dependent manner (37). Exercise-generated ROS
come from many sources (384) and include hydro-
gen peroxide (H2O2) (28, 297, 487, 492), superoxide
anion (O2

�·) (22, 296, 400), or hydroxyl radicals
(OH�) (104, 124, 348, 381) (FIGURE 4). However,
strong evidence showing that regular exercise up-
regulates endogenous antioxidants not only in
muscles (1, 27, 80, 148, 149, 156, 169, 177, 180, 189,
207, 211, 225, 251, 259, 260, 264, 296, 297, 299, 309,
349, 377–379, 381, 404, 428, 446, 470, 490, 493, 494),
where the effect can be evident after just five con-
secutive training days (493, 494), but also in liver
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(194, 211, 491), blood (17, 21, 46, 53, 62, 64, 96, 98,
107, 127, 128, 140, 151, 215, 229, 232, 238, 239, 258,
264, 291, 306, 311, 342, 350, 404, 406, 433, 438, 444,
449, 461, 467, 469, 470), or other tissues (brain,
heart, kidney, stomach, intestine, vessels) (27, 96,
132, 186, 264, 332, 404, 468, 490) has changed the
old view of exercise as a potential source of harm-
ful oxidative damage. In fact, muscle-derived ROS
occurring during prolonged inactivity contribute to
disuse muscle atrophy (382, 383), whereas the
same stimulus coming from working fibers is re-
quired for training adaptations to occur (149, 150,
168, 404). This apparent paradox could be ex-
plained by the hormesis theory (54, 210, 392, 393):
chemicals and toxic substances that are deleterious at

high doses can have a low-dose beneficial effect.
Thus increases in ROS elicited by moderate-inten-
sity exercise could lead to beneficial adaptations,
especially increased muscle oxidative capacity (109,
202). Yet, if ROS levels are increased many-fold
above basal levels and antioxidant defense capac-
ity, muscle atrophy can occur, e.g., Duchenne
muscular dystrophy (383, 393). A second potential
factor is differences in the ROS origin between
contracting and resting muscle fibers, with mito-
chondria being the primary source in the latter
(218) but not in the former (380).

ROS might play an important signaling role in angio-
genesis (67), improved vascular distensibility (261),
PGC-1� upregulation (404, 447), PGC-1�/nuclear

FIGURE 4. Summary of exercise-generated ROS, their main putative effects, and the molecular signals/pathways involved
CAT, catalase; GCS, �-glutamylcysteine synthetase; GPx, glutathione peroxidase; H2O2, hydrogen peroxide; HO-1, heme oxygenase-1; HSP: heat
shock proteins; NADPH, nicotinamide adenine dinucleotide phosphate; O2�·, superoxide anion radical; SOD, super oxide dismutase.
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respiratory factor 1-stimulated mitochondriogen-
esis (199, 371, 517), upregulation of cytoprotective
“stress proteins” (heme oxygenase 1, heat shock
proteins like HSP60 and HSP70) in muscle (25, 101,
119, 273, 298, 363, 454, 455), or skeletal muscle
hypertrophy (203, 427). An important signaling link
between contraction-induced ROS production and
exercise adaptations involves the redox regulation
of NF-�B, a family of transcriptional activators
controlling the expression of genes involved in in-
flammation, cell growth, stress responses, or apop-
tosis (109, 210, 240, 310, 481). Other pathways are
MAPK, PI3K/Akt, or p53 activation (11, 203, 361).
Interestingly, despite its popularity among west-
erners for its hypothetical anti-disease/rejuvenating
effects, antioxidant supplementation does not mimic,
and in fact can reverse, beneficial exercise adapta-
tions (127, 148, 149, 226, 404).

Skeletal muscle also generates RNS including
NO· (20, 99, 233, 462, 502) or nitrite ion (NO2

�)
(489), which at high doses may cause nitrosative
stress and tissue damage but at low doses has

beneficial regulatory effects in vasodilation, glu-
cose uptake, or immune function (300).

Autophagy

Autophagy, a cellular quality control mechanism of
degradation and recycling of damaged macromol-
ecules and organelles, is gaining attention for its
potential involvement in longevity promotion
(414) and defense against chronic diseases (320). It
could also mediate some of the exercise benefits
(FIGURE 5), as suggested by recent data from ro-
dent models.

In normal mice, acute exercise increases au-
tophagy activity in skeletal/cardiac muscles and
tissues involved in glucose/energy homeostasis
(pancreas, liver, adipose tissue), whereas transgenic
mice deficient in stimulus-induced autophagy show
decreased endurance and altered glucose metabo-
lism (175). Exercise also induces autophagy in
mouse brain, supporting its potential to promote
elimination of damaging proteins causing aging

FIGURE 5. Exercise and autophagy
FoxO3a, FOXO transcription factor; mTOR, mammalian target-of-rapamycin.
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neurodegeneration (176). Chronic exercise in-
creases autophagy activity and reduces apoptosis
in aging muscle (230, 283) by modulating IGF-I,
Akt/mTOR, and Akt/FoxO3a signaling, thereby
preventing loss of muscle mass/strength (283).
Others, however, found the protective effect of
chronic exercise on diabetes-induced muscle atro-
phy was probably due to decreased muscle au-
tophagy (257). Taken together, these apparently
controversial data would suggest an optimal bal-
ance is obtained in the trained muscle between
“healthy” autophagy-induced turnover of dam-
aged cellular components (which attenuates/pre-
vents muscle atrophy), and “excessive” autophagy-
mediated protein degradation (which eventually
leads to muscle atrophy).

Data is still scarce in humans, yet recent prelim-
inary reports suggest upregulation of muscle mark-
ers of autophagy after strenuous acute endurance
(205) or resistance exercise (130), or after a com-
bined weight loss and moderate-intensity exercise
program in old obese women (513).

Summary and Perspective

There is strong epidemiological evidence on the
beneficial effects of regular exercise, which are
likely to go well beyond reducing CVD risk factors.
Furthermore, exercise benefits can overcome those
of common drugs when one considers that the
exercise polypill combines preventive, multi-sys-
temic effects with little adverse consequences and
at lower cost. Exercise, and especially the contract-
ing muscle, is indeed a source of numerous drug-
like molecules with beneficial effects across all
ages. Furthermore, regular exercise is probably the
lifestyle intervention with the most profound up-
regulating effect on hundreds of genes involved in
tissue maintenance and homeostasis, implying a
complex cross talk between muscles and other tis-
sues. Progress in proteomics and other techniques
is allowing identification of a myriad of novel myo-
kines and also is unraveling the fact that many
molecules can have a quite different effect depend-
ing on their tissue of origin, as well as on the
metabolic state (rest vs. exercise) during which
they are secreted to the bloodstream.

Identification of exercise adaptations is helping
to improve our understanding of the pathophysi-
ology of chronic diseases and changing old views,
which could help investigate new therapeutic tar-
gets and approaches. For instance, ROS signals are
increasingly viewed as mediators of the health-
promoting, lifespan-extending capabilities of exer-
cise, even questioning the classic Harman’s Free
Radical Theory of Aging. With regard to aging, the
“oldest old” are the most rapidly growing population
segment among westerners. As opposed to exer-

cise, no drug intervention has proven efficient to
maintain muscle fitness, a key factor to ensure
independent living throughout all stages of life. �
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